首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1072篇
  免费   70篇
  国内免费   114篇
安全科学   18篇
废物处理   4篇
环保管理   87篇
综合类   264篇
基础理论   468篇
污染及防治   37篇
评价与监测   27篇
社会与环境   321篇
灾害及防治   30篇
  2024年   1篇
  2023年   19篇
  2022年   19篇
  2021年   32篇
  2020年   23篇
  2019年   26篇
  2018年   26篇
  2017年   33篇
  2016年   42篇
  2015年   36篇
  2014年   33篇
  2013年   94篇
  2012年   46篇
  2011年   67篇
  2010年   70篇
  2009年   45篇
  2008年   68篇
  2007年   75篇
  2006年   65篇
  2005年   70篇
  2004年   53篇
  2003年   37篇
  2002年   51篇
  2001年   39篇
  2000年   39篇
  1999年   22篇
  1998年   16篇
  1997年   10篇
  1996年   16篇
  1995年   19篇
  1994年   8篇
  1993年   22篇
  1992年   5篇
  1991年   10篇
  1990年   3篇
  1989年   7篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1973年   1篇
  1971年   2篇
排序方式: 共有1256条查询结果,搜索用时 15 毫秒
981.
Abstract: Assessment of abundance, survival, recruitment rates, and density (i.e., population assessment) is especially challenging for elusive species most in need of protection (e.g., rare carnivores). Individual identification methods, such as DNA sampling, provide ways of studying such species efficiently and noninvasively. Additionally, statistical methods that correct for undetected animals and account for locations where animals are captured are available to efficiently estimate density and other demographic parameters. We collected hair samples of European wildcat (Felis silvestris) from cheek‐rub lure sticks, extracted DNA from the samples, and identified each animals’ genotype. To estimate the density of wildcats, we used Bayesian inference in a spatial capture‐recapture model. We used WinBUGS to fit a model that accounted for differences in detection probability among individuals and seasons and between two lure arrays. We detected 21 individual wildcats (including possible hybrids) 47 times. Wildcat density was estimated at 0.29/km2 (SE 0.06), and 95% of the activity of wildcats was estimated to occur within 1.83 km from their home‐range center. Lures located systematically were associated with a greater number of detections than lures placed in a cell on the basis of expert opinion. Detection probability of individual cats was greatest in late March. Our model is a generalized linear mixed model; hence, it can be easily extended, for instance, to incorporate trap‐ and individual‐level covariates. We believe that the combined use of noninvasive sampling techniques and spatial capture‐recapture models will improve population assessments, especially for rare and elusive animals.  相似文献   
982.
Abstract: The amphibian fungal pathogen Batrachochytrium dendrobatidis (Bd) has received considerable attention due to its role in amphibian population declines worldwide. Although many amphibian species appear to be affected by Bd, there is little information on species‐specific differences in susceptibility to this pathogen. We used a comparative experimental approach to examine Bd susceptibility in 6 amphibian species from the United States. We exposed postmetamorphic animals to Bd for 30 days and monitored mortality, feeding rates, and infection levels. In all species tested, Bd‐exposed animals had higher rates of mortality than unexposed (control) animals. However, we found differences in mortality rates among species even though the amount of Bd detected on the different species’ bodies did not differ. Of the species tested, southern toads (Anaxyrus terrestris) and wood frogs (Lithobates sylvaticus) had the highest rates of Bd‐related mortality. Within species, we detected lower levels of Bd on individuals that survived longer and found that the relationship between body size and infection levels differed among species. Our results indicate that, even under identical conditions, amphibian species differ in susceptibility to Bd. This study represents a step toward identifying and understanding species variation in disease susceptibility, which can be used to optimize conservation strategies.  相似文献   
983.
Abstract:  Where mechanisms inherent within the biology of a species affect individual fitness at low density, demographic-scale depensation may occur, hastening further decline and leading ultimately to population extirpation and species extinction. Reduction in fertility at low population densities has been identified in marine and terrestrial species. Using data on hatch success and hatchling-emergence success as proxies for fertilization success, we conducted a global meta-analysis of data from breeding aggregations of green turtles ( Chelonia mydas ) and loggerhead turtles ( Caretta caretta ). We found that there has been no reduction in fertility in small nesting aggregations in either of these species worldwide. We considered mechanisms within the mating strategies and reproductive biology of marine turtles that may allow for novel genetic input and facilitate enhanced gene flow among rookeries. Behavioral reproductive mechanisms, such as natal philopatry and polyandry, may mitigate potential impacts of depensation and contribute to the resilience of these species.  相似文献   
984.
Abstract: Conservation efforts at local, regional, and global scales often focus on threatened species despite recent calls to adopt more equitable and potentially more economically rational approaches. Critics contend that conservation planning centered only on threatened species fails to deliver cost‐efficient conservation outcomes. We explored how planning to preserve threatened mammal species would influence the efficiency and effectiveness of conservation investments in East Kalimantan, Indonesia. We found that the explicit protection of threatened species delivered cost‐efficient outcomes in this situation, afforded adequate protection to over 90% of those species not yet considered endangered, and contributed to the partial protection of the remainder. We used Marxan, a conservation planning tool, to determine the frequency that planning units are selected in efficient reserve systems and assessed the relative risk of deforestation of each planning unit. Our methods allowed us to identify areas of the region that require the most urgent conservation action.  相似文献   
985.
Abstract: In conservation biology, understanding the causes of endangerment is a key step to devising effective conservation strategies. We used molecular evidence (coalescent simulations of population changes from microsatellite data) and historical information (habitat and human population changes) to investigate how the most‐isolated populations of giant pandas (Ailuropoda melanoleuca) in the Xiaoxiangling Mountains became highly endangered. These populations experienced a strong, recent demographic reduction (60‐fold), starting approximately 250 years BP. Explosion of the human population and use of non‐native crop species at the peak of the Qing Empire resulted in land‐use changes, deforestation, and habitat fragmentation, which are likely to have led to the drastic reduction of the most‐isolated populations of giant pandas. We predict that demographic, genetic, and environmental factors will lead to extinction of giant pandas in the Xiaoxiangling Mountains in the future if the population remains isolated. Therefore, a targeted conservation action—translocation—has been proposed and is being implemented by the Chinese goverment.  相似文献   
986.
Abstract: Chytridiomycosis is linked to the worldwide decline of amphibians, yet little is known about the demographic effects of the disease. We collected capture–recapture data on three populations of boreal toads (Bufo boreas [Bufo = Anaxyrus]) in the Rocky Mountains (U.S.A.). Two of the populations were infected with chytridiomycosis and one was not. We examined the effect of the presence of amphibian chytrid fungus (Batrachochytrium dendrobatidis [Bd]; the agent of chytridiomycosis) on survival probability and population growth rate. Toads that were infected with Bd had lower average annual survival probability than uninfected individuals at sites where Bd was detected, which suggests chytridiomycosis may reduce survival by 31–42% in wild boreal toads. Toads that were negative for Bd at infected sites had survival probabilities comparable to toads at the uninfected site. Evidence that environmental covariates (particularly cold temperatures during the breeding season) influenced toad survival was weak. The number of individuals in diseased populations declined by 5–7%/year over the 6 years of the study, whereas the uninfected population had comparatively stable population growth. Our data suggest that the presence of Bd in these toad populations is not causing rapid population declines. Rather, chytridiomycosis appears to be functioning as a low‐level, chronic disease whereby some infected individuals survive but the overall population effects are still negative. Our results show that some amphibian populations may be coexisting with Bd and highlight the importance of quantitative assessments of survival in diseased animal populations.  相似文献   
987.
Abstract: Studies evaluating the impact of inbreeding depression on population viability of threatened species tend to focus on the effects of inbreeding at a single life‐history stage (e.g., juvenile survival). We examined the effects of inbreeding across the full life‐history continuum, from survival up to adulthood, to subsequent reproductive success, and to the recruitment of second‐generation offspring, in wild Takahe ( Porphyrio hochstetteri ) by analyzing pedigree and fitness data collected over 21 breeding seasons. Although the effect size of inbreeding at individual life‐history stages was small, inbreeding depression accumulated across multiple life‐history stages and ultimately reduced long‐term fitness (i.e., successful recruitment of second‐generation offspring). The estimated total lethal equivalents (2B) summed across all life‐history stages were substantial (16.05, 95% CI 0.08–90.8) and equivalent to an 88% reduction in recruitment of second‐generation offspring for closely related pairs (e.g., sib–sib pairings) relative to unrelated pairs (according to the pedigree). A history of small population size in the Takahe could have contributed to partial purging of the genetic load and the low level of inbreeding depression detected at each single life‐history stage. Nevertheless, our results indicate that such “purged” populations can still exhibit substantial inbreeding depression, especially when small but negative fitness effects accumulate across the species’ life history. Because inbreeding depression can ultimately affect population viability of small, isolated populations, our results illustrate the importance of measuring the effects of inbreeding across the full life‐history continuum.  相似文献   
988.
Reintroductions are important components of conservation and recovery programs for rare plant species, but their long-term success rates are poorly understood. Previous reviews of plant reintroductions focused on short-term (e.g., ≤3 years) survival and flowering of founder individuals rather than on benchmarks of intergenerational persistence, such as seedling recruitment. However, short-term metrics may obscure outcomes because the unique demographic properties of reintroductions, including small size and unstable stage structure, could create lags in population growth. We used time-to-event analysis on a database of unusually well-monitored and long-term (4–28 years) reintroductions of 27 rare plant species to test whether life-history traits and population characteristics of reintroductions create time-lagged responses in seedling recruitment (i.e., recruitment time lags [RTLs]), an important benchmark of success and indicator of persistence in reintroduced populations. Recruitment time lags were highly variable among reintroductions, ranging from <1 to 17 years after installation. Recruitment patterns matched predictions from life-history theory with short-lived species (fast species) exhibiting consistently shorter and less variable RTLs than long-lived species (slow species). Long RTLs occurred in long-lived herbs, especially in grasslands, whereas short RTLs occurred in short-lived subtropical woody plants and annual herbs. Across plant life histories, as reproductive adult abundance increased, RTLs decreased. Highly variable RTLs were observed in species with multiple reintroduction events, suggesting local processes are just as important as life-history strategy in determining reintroduction outcomes. Time lags in restoration outcomes highlight the need to scale success benchmarks in reintroduction monitoring programs with plant life-history strategies and the unique demographic properties of restored populations. Drawing conclusions on the long-term success of plant reintroduction programs is premature given that demographic processes in species with slow life-histories take decades to unfold.  相似文献   
989.
Hybridization poses a major challenge for species conservation because it threatens both genetic integrity and adaptive potential. Yet, hybridization can occasionally offer unprecedented opportunity for species recovery if the genome of an extinct taxon is present among living hybrids such that selective breeding could recapture it. We explored the design elements for establishing a captive-breeding program for Galapagos tortoises (Chelonoidis spp.) built around individuals with admixed ancestry involving an extinct species. The target individuals were hybrids between the extinct species from Floreana Island, C. niger, and an extant species, C. becki, which were recently found in the endemic range of C. becki, from Wolf Volcano on Isabela Island. We combined genotypic data from 35 tortoises with high ancestry from C. niger with forward-in-time simulations to explore captive breeding strategies that maximized overall genetic diversity and ancestry from C. niger while accommodating resource constraints, species biology, and the urgency to return tortoises to Floreana Island for facilitating ecosystem restoration. Overall genetic diversity was maximized when in the simulation tortoises were organized in relatively small breeding groups. Substantial amounts of the C. niger genome were captured despite limited resources available for selectively breeding tortoises in captivity. Genetic diversity was maximized when captive-bred offspring were released to the wild rather than being used as additional breeders. Our results provide genetic-based and practical guidance on the inclusion of hybrids with genomic representation from extinct taxa into species restoration programs and informs the ongoing debate on the value of hybrids in biodiversity conservation.  相似文献   
990.
Attempts to identify predictors and mechanisms of invasion success have been weakened by poor data quality, mostly because monitoring does not begin immediately after introduction events. To overcome this issue, we used data from conservation translocations of threatened bird species. We analyzed information on >1200 translocation events of >150 bird species to investigate how life-history traits affect population establishment measured based on rates of survival and reproduction. Species position along the slow–fast life-history continuum was a key predictor of translocation success. Species with fast-paced life histories were less likely to survive (over both short- and mid-term) and more likely to breed successfully than species with slow life histories. The temporal partitioning of reproductive effort (number of clutches per year) also affected the probability of successful reproduction. Our results illustrate how conservation-motivated reintroduction programs can provide proxies for the initial stages of the invasion process, enabling empirical tests of predictions from life-history theory and informing management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号