首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1185篇
  免费   439篇
  国内免费   4篇
安全科学   3篇
环保管理   4篇
综合类   29篇
基础理论   1561篇
污染及防治   14篇
评价与监测   4篇
社会与环境   11篇
灾害及防治   2篇
  2023年   91篇
  2022年   84篇
  2021年   113篇
  2020年   115篇
  2019年   105篇
  2018年   89篇
  2017年   119篇
  2016年   106篇
  2015年   129篇
  2014年   138篇
  2013年   119篇
  2012年   86篇
  2011年   96篇
  2010年   117篇
  2009年   26篇
  2008年   48篇
  2007年   3篇
  2006年   6篇
  2005年   4篇
  2004年   3篇
  2003年   5篇
  2002年   6篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1983年   1篇
  1982年   2篇
  1975年   1篇
排序方式: 共有1628条查询结果,搜索用时 15 毫秒
91.
Abstract: Concerns about pollinator declines have grown in recent years, yet the ability to detect changes in abundance, taxonomic richness, and composition of pollinator communities is hampered severely by the lack of data over space and time. Citizen scientists may be able to extend the spatial and temporal extent of pollinator monitoring programs. We developed a citizen‐science monitoring protocol in which we trained 13 citizen scientists to observe and classify floral visitors at the resolution of orders or super families (e.g., bee, wasp, fly) and at finer resolution within bees (superfamily Apoidea) only. We evaluated the protocol by comparing data collected simultaneously at 17 sites by citizen scientists (observational data set) and by professionals (specimen‐based data set). The sites differed with respect to the presence and age of hedgerows planted to improve habitat quality for pollinators. We found significant, positive correlations among the two data sets for higher level taxonomic composition, honey bee (Apis mellifera) abundance, non‐Apis bee abundance, bee richness, and bee community similarity. Results for both data sets also showed similar trends (or lack thereof) in these metrics among sites differing in the presence and age of hedgerows. Nevertheless, citizen scientists did not observe approximately half of the bee groups collected by professional scientists at the same sites. Thus, the utility of citizen‐science observational data may be restricted to detection of community‐level changes in abundance, richness, or similarity over space and time, and citizen‐science observations may not reliably reflect the abundance or frequency of occurrence of specific pollinator species or groups.  相似文献   
92.
Abstract: Results of many studies show unsustainable levels of bushmeat hunting across West/Central Africa. Nevertheless, these results are usually derived from snapshot sustainability indices in which critical parameters are often taken from the literature. Simple, more informative tools for assessing sustainability are needed. We evaluated the impact of bushmeat hunting across a range of temporal, spatial, and taxonomic scales in a comparison of different measures of sustainability. Over 15 months in 2002–2004 in and around a village close to Equatorial Guinea's Monte Alén National Park, we collected data via a village offtake survey, hunter‐camp bushmeat‐consumption diaries, hunter interviews, and following hunters during hunts. We compared 2003 data with a previous offtake survey (1998–1999) and interview reports back to 1990. In the past 14 years, average distance from the village at which hunters operated remained constant, with hunters switching back and forth between long‐established camps, although trapping effort increased. In the past 5 years, overall offtake and number of active hunters did not change substantially, although catch per unit effort (CPUE) decreased slightly. Although the proportion of the two most commonly trapped species (Cephalophus monticola and Atherurus africanus) and gun‐hunted primates increased in the offtake, species presumably less robust to trapping decreased slightly. Apparent sustainability in economic terms may be masking gradual local extirpation of more vulnerable species before and during this study. Our results suggest that changes in prey profiles and CPUE may be the most accurate indicators of actual sustainability; these indices can be monitored with simple village‐based offtake surveys and hunter interviews to improve community management of bushmeat hunting.  相似文献   
93.
Abstract: The U.S. Endangered Species Act (ESA) defines an endangered species as one “at risk of extinction throughout all or a significant portion of its range.” The prevailing interpretation of this phrase, which focuses exclusively on the overall viability of listed species without regard to their geographic distribution, has led to development of listing and recovery criteria with fundamental conceptual, legal, and practical shortcomings. The ESA's concept of endangerment is broader than the biological concept of extinction risk in that the “esthetic, ecological, educational, historical, recreational, and scientific” values provided by species are not necessarily furthered by a species mere existence, but rather by a species presence across much of its former range. The concept of “significant portion of range” thus implies an additional geographic component to recovery that may enhance viability, but also offers independent benefits that Congress intended the act to achieve. Although the ESA differs from other major endangered‐species protection laws because it acknowledges the distinct contribution of geography to recovery, it resembles the “representation, resiliency, and redundancy” conservation‐planning framework commonly referenced in recovery plans. To address representation, listing and recovery standards should consider not only what proportion of its former range a species inhabits, but the types of habitats a species occupies and the ecological role it plays there. Recovery planning for formerly widely distributed species (e.g., the gray wolf [Canis lupus]) exemplifies how the geographic component implicit in the ESA's definition of endangerment should be considered in determining recovery goals through identification of ecologically significant types or niche variation within the extent of listed species, subspecies, or “distinct population segments.” By linking listing and recovery standards to niche and ecosystem concepts, the concept of ecologically significant type offers a scientific framework that promotes more coherent dialogue concerning the societal decisions surrounding recovery of endangered species.  相似文献   
94.
Abstract: The links between species–environment relations and species’ responses to protection are unclear, but the objectives of marine protected areas (MPAs) are most likely to be achieved when those relations are known and inform MPA design. The components of a species’ habitat vary with the spatial resolution of the area considered. We characterized areas at two resolutions: 250 m2 (transect) and approximately 30,000 m2 (seascape). We considered three categories of environmental variables: substrate type, bottom complexity, and depth. We sought to determine at which resolution habitat characteristics were a better predictor of abundance and species composition of fishes and whether the relations with environmental variables at either resolution affected species’ responses to protection. Habitat features accounted for a larger proportion of spatial variation in species composition and abundances than differences in protection status. This spatial variation was explained best by habitat characteristics at the seascape level than at the transect level. Species’ responses to protected areas were specific to particular seascape characteristics, primarily depth, and bottom complexity. Our method may be useful for prioritizing marine areas for protection, designing MPAs, and monitoring their effectiveness. It identified areas that provided natural shelter, areas acting as buffer zones, and areas where fish species were most responsive to protection. The identification of such areas is necessary for cost‐effective establishment and monitoring of MPAs.  相似文献   
95.
Abstract: Avian conservation efforts must account for changes in vegetation composition and structure associated with climate change. We modeled vegetation change and the probability of occurrence of birds to project changes in winter bird distributions associated with climate change and fire management in the northern Chihuahuan Desert (southwestern U.S.A.). We simulated vegetation change in a process‐based model (Landscape and Fire Simulator) in which anticipated climate change was associated with doubling of current atmospheric carbon dioxide over the next 50 years. We estimated the relative probability of bird occurrence on the basis of statistical models derived from field observations of birds and data on vegetation type, topography, and roads. We selected 3 focal species, Scaled Quail (Callipepla squamata), Loggerhead Shrike (Lanius ludovicianus), and Rock Wren (Salpinctes obsoletus), that had a range of probabilities of occurrence for our study area. Our simulations projected increases in relative probability of bird occurrence in shrubland and decreases in grassland and Yucca spp. and ocotillo (Fouquieria splendens) vegetation. Generally, the relative probability of occurrence of all 3 species was highest in shrubland because leaf‐area index values were lower in shrubland. This high probability of occurrence likely is related to the species’ use of open vegetation for foraging. Fire suppression had little effect on projected vegetation composition because as climate changed there was less fuel and burned area. Our results show that if future water limits on plant type are considered, models that incorporate spatial data may suggest how and where different species of birds may respond to vegetation changes.  相似文献   
96.
Abstract: Most protected areas are too small to sustain populations of wide‐ranging mammals; thus, identification and conservation of high‐quality habitat for those animals outside parks is often a high priority, particularly for regions where extensive land conversion is occurring. This is the case in the vicinity of Emas National Park, a small protected area in the Brazilian Cerrado. Over the last 40 years the native vegetation surrounding the park has been converted to agriculture, but the region still supports virtually all of the animals native to the area. We determined the effectiveness of scat‐detection dogs in detecting presence of five species of mammals threatened with extinction by habitat loss: maned wolf (Chrysocyon brachyurus), puma (Puma concolor), jaguar (Panthera onca), giant anteater (Myrmecophaga tridactyla), and giant armadillo (Priodontes maximus). The probability of scat detection varied among the five species and among survey quadrats of different size, but was consistent across team, season, and year. The probability of occurrence, determined from the presence of scat, in a randomly selected site within the study area ranged from 0.14 for jaguars, which occur primarily in the forested areas of the park, to 0.91 for maned wolves, the most widely distributed species in our study area. Most occurrences of giant armadillos in the park were in open grasslands, but in the agricultural matrix they tended to occur in riparian woodlands. At least one target species occurred in every survey quadrat, and giant armadillos, jaguars, and maned wolves were more likely to be present in quadrats located inside than outside the park. The effort required for detection of scats was highest for the two felids. We were able to detect the presence for each of five wide‐ranging species inside and outside the park and to assign occurrence probabilities to specific survey sites. Thus, scat dogs provide an effective survey tool for rare species even when accurate detection likelihoods are required. We believe the way we used scat‐detection dogs to determine the presence of species can be applied to the detection of other mammalian species in other ecosystems.  相似文献   
97.
98.
Conservation and management of marine biodiversity depends on biomonitoring of marine habitats, but current approaches are resource-intensive and require different approaches for different organisms. Environmental DNA (eDNA) extracted from water samples is an efficient and versatile approach to detecting aquatic animals. In the ocean, eDNA composition reflects local fauna at fine spatial scales, but little is known about the effectiveness of eDNA-based monitoring of marine communities at larger scales. We investigated the potential of eDNA to characterize and distinguish marine communities at large spatial scales by comparing vertebrate species composition among marine habitats in Qatar, the Arabian Gulf (also known as the Persian Gulf), based on eDNA metabarcoding of seawater samples. We conducted species accumulation analyses to estimate how much of the vertebrate diversity we detected. We obtained eDNA sequences from a diverse assemblage of marine vertebrates, spanning 191 taxa in 73 families. These included rare and endangered species and covered 36% of the bony fish genera previously recorded in the Gulf. Sites of similar habitat type were also similar in eDNA composition. The species accumulation analyses showed that the number of sample replicates was insufficient for some sampling sites but suggested that a few hundred eDNA samples could potentially capture >90% of the marine vertebrate diversity in the study area. Our results confirm that seawater samples contain habitat-characteristic molecular signatures and that eDNA monitoring can efficiently cover vertebrate diversity at scales relevant to national and regional conservation and management.  相似文献   
99.
Information on population sizes and trends of threatened species is essential for their conservation, but obtaining reliable estimates can be challenging. We devised a method to improve the precision of estimates of population size obtained from capture–recapture studies for species with low capture and recapture probabilities and short seasonal activity, illustrated with population data of an elusive grasshopper (Prionotropis rhodanica). We used data from 5 capture–recapture studies to identify methodological and environmental factors affecting capture and recapture probabilities and estimates of population size. In a simulation, we used the population size and capture and recapture probability estimates obtained from the field studies to identify the minimum number of sampling occasions needed to obtain unbiased and robust estimates of population size. Based on these results we optimized the capture–recapture design, implemented it in 2 additional studies, and compared their precision with those of the nonoptimized studies. Additionally, we simulated scenarios based on thresholds of population size in criteria C and D of the International Union for Conservation of Nature (IUCN) Red List to investigate whether estimates of population size for elusive species can reliably inform red-list assessments. Identifying parameters that affect capture and recapture probabilities (for the grasshopper time since emergence of first adults) and optimizing field protocols based on this information reduced study effort (−6% to −27% sampling occasions) and provided more precise estimates of population size (reduced coefficient of variation) compared with nonoptimized studies. Estimates of population size from the scenarios based on the IUCN thresholds were mostly unbiased and robust (only the combination of very small populations and little study effort produced unreliable estimates), suggesting capture–recapture can be considered reliable for informing red-list assessments. Although capture–recapture remains difficult and costly for elusive species, our optimization procedure can help determine efficient protocols to increase data quality and minimize monitoring effort.  相似文献   
100.
The ongoing biodiversity crisis becomes evident in the widely observed decline in abundance and diversity of species, profound changes in community structure, and shifts in species’ phenology. Insects are among the most affected groups, with documented decreases in abundance up to 76% in the last 25–30 years in some terrestrial ecosystems. Identifying the underlying drivers is a major obstacle as most ecosystems are affected by multiple stressors simultaneously and in situ measurements of environmental variables are often missing. In our study, we investigated a headwater stream belonging to the most common stream type in Germany located in a nature reserve with no major anthropogenic impacts except climate change. We used the most comprehensive quantitative long-term data set on aquatic insects available, which includes weekly measurements of species-level insect abundance, daily water temperature and stream discharge as well as measurements of additional physicochemical variables for a 42-year period (1969–2010). Overall, water temperature increased by 1.88 °C and discharge patterns changed significantly. These changes were accompanied by an 81.6% decline in insect abundance, but an increase in richness (+8.5%), Shannon diversity (+22.7%), evenness (+22.4%), and interannual turnover (+34%). Moreover, the community's trophic structure and phenology changed: the duration of emergence increased by 15.2 days, whereas the peak of emergence moved 13.4 days earlier. Additionally, we observed short-term fluctuations (<5 years) in almost all metrics as well as complex and nonlinear responses of the community toward climate change that would have been missed by simply using snapshot data or shorter time series. Our results indicate that climate change has already altered biotic communities severely even in protected areas, where no other interacting stressors (pollution, habitat fragmentation, etc.) are present. This is a striking example of the scientific value of comprehensive long-term data in capturing the complex responses of communities toward climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号