首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1216篇
  免费   446篇
  国内免费   4篇
安全科学   3篇
废物处理   2篇
环保管理   6篇
综合类   31篇
基础理论   1588篇
污染及防治   14篇
评价与监测   5篇
社会与环境   14篇
灾害及防治   3篇
  2023年   91篇
  2022年   87篇
  2021年   117篇
  2020年   118篇
  2019年   108篇
  2018年   90篇
  2017年   119篇
  2016年   109篇
  2015年   132篇
  2014年   140篇
  2013年   122篇
  2012年   86篇
  2011年   97篇
  2010年   120篇
  2009年   25篇
  2008年   49篇
  2007年   3篇
  2006年   6篇
  2005年   4篇
  2004年   4篇
  2003年   6篇
  2002年   8篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1983年   1篇
  1982年   2篇
  1975年   1篇
排序方式: 共有1666条查询结果,搜索用时 390 毫秒
271.
Measuring progress toward international biodiversity targets requires robust information on the conservation status of species, which the International Union for Conservation of Nature (IUCN) Red List of Threatened Species provides. However, data and capacity are lacking for most hyperdiverse groups, such as invertebrates, plants, and fungi, particularly in megadiverse or high-endemism regions. Conservation policies and biodiversity strategies aimed at halting biodiversity loss by 2020 need to be adapted to tackle these information shortfalls after 2020. We devised an 8-point strategy to close existing data gaps by reviving explorative field research on the distribution, abundance, and ecology of species; linking taxonomic research more closely with conservation; improving global biodiversity databases by making the submission of spatially explicit data mandatory for scientific publications; developing a global spatial database on threats to biodiversity to facilitate IUCN Red List assessments; automating preassessments by integrating distribution data and spatial threat data; building capacity in taxonomy, ecology, and biodiversity monitoring in countries with high species richness or endemism; creating species monitoring programs for lesser-known taxa; and developing sufficient funding mechanisms to reduce reliance on voluntary efforts. Implementing these strategies in the post-2020 biodiversity framework will help to overcome the lack of capacity and data regarding the conservation status of biodiversity. This will require a collaborative effort among scientists, policy makers, and conservation practitioners.  相似文献   
272.
The establishment of marine protected areas (MPAs) is a critical step in ensuring the continued persistence of marine biodiversity. Although the area protected in MPAs is growing, the movement of individuals (or larvae) among MPAs, termed connectivity, has only recently been included as an objective of many MPAs. As such, assessing connectivity is often neglected or oversimplified in the planning process. For promoting population persistence, it is important to ensure that protected areas in a system are functionally connected through dispersal or adult movement. We devised a multi-species model of larval dispersal for the Australian marine environment to evaluate how much local scale connectivity is protected in MPAs and determine whether the extensive system of MPAs truly functions as a network. We focused on non-migratory species with simplified larval behaviors (i.e., passive larval dispersal) (e.g., no explicit vertical migration) as an illustration. Of all the MPAs analyzed (approximately 2.7 million km2), outside the Great Barrier Reef and Ningaloo Reef, <50% of MPAs (46-80% of total MPA area depending on the species considered) were functionally connected. Our results suggest that Australia's MPA system cannot be referred to as a single network, but rather a collection of numerous smaller networks delineated by natural breaks in the connectivity of reef habitat. Depending on the dispersal capacity of the taxa of interest, there may be between 25 and 47 individual ecological networks distributed across the Australian marine environment. The need to first assess the underlying natural connectivity of a study system prior to implementing new MPAs represents a key research priority for strategically enlarging MPA networks. Our findings highlight the benefits of integrating multi-species connectivity into conservation planning to identify opportunities to better incorporate connectivity into the design of MPA systems and thus to increase their capacity to support long-term, sustainable biodiversity outcomes.  相似文献   
273.
Estimates of biodiversity change are essential for the management and conservation of ecosystems. Accurate estimates rely on selecting representative sites, but monitoring often focuses on sites of special interest. How such site-selection biases influence estimates of biodiversity change is largely unknown. Site-selection bias potentially occurs across four major sources of biodiversity data, decreasing in likelihood from citizen science, museums, national park monitoring, and academic research. We defined site-selection bias as a preference for sites that are either densely populated (i.e., abundance bias) or species rich (i.e., richness bias). We simulated biodiversity change in a virtual landscape and tracked the observed biodiversity at a sampled site. The site was selected either randomly or with a site-selection bias. We used a simple spatially resolved, individual-based model to predict the movement or dispersal of individuals in and out of the chosen sampling site. Site-selection bias exaggerated estimates of biodiversity loss in sites selected with a bias by on average 300–400% compared with randomly selected sites. Based on our simulations, site-selection bias resulted in positive trends being estimated as negative trends: richness increase was estimated as 0.1 in randomly selected sites, whereas sites selected with a bias showed a richness change of −0.1 to −0.2 on average. Thus, site-selection bias may falsely indicate decreases in biodiversity. We varied sampling design and characteristics of the species and found that site-selection biases were strongest in short time series, for small grains, organisms with low dispersal ability, large regional species pools, and strong spatial aggregation. Based on these findings, to minimize site-selection bias, we recommend use of systematic site-selection schemes; maximizing sampling area; calculating biodiversity measures cumulatively across plots; and use of biodiversity measures that are less sensitive to rare species, such as the effective number of species. Awareness of the potential impact of site-selection bias is needed for biodiversity monitoring, the design of new studies on biodiversity change, and the interpretation of existing data.  相似文献   
274.
Understanding complex systems is essential to ensure their conservation and effective management. Models commonly support understanding of complex ecological systems and, by extension, their conservation. Modeling, however, is largely a social process constrained by individuals’ mental models (i.e., a small-scale internal model of how a part of the world works based on knowledge, experience, values, beliefs, and assumptions) and system complexity. To account for both system complexity and the diversity of knowledge of complex systems, we devised a novel way to develop a shared qualitative complex system model. We disaggregated a system (carbonate coral reefs) into smaller subsystem modules that each represented a functioning unit, about which an individual is likely to have more comprehensive knowledge. This modular approach allowed us to elicit an individual mental model of a defined subsystem for which the individuals had a higher level of confidence in their knowledge of the relationships between variables. The challenge then was to bring these subsystem models together to form a complete, shared model of the entire system, which we attempted through 4 phases: develop the system framework and subsystem modules; develop the individual mental model elicitation methods; elicit the mental models; and identify and isolate differences for exploration and identify similarities to cocreate a shared qualitative model. The shared qualitative model provides opportunities to develop a quantitative model to understand and predict complex system change.  相似文献   
275.
Most countries have many pieces of legislation that govern biodiversity, including a range of criminal, administrative, and civil law provisions that state how wildlife must be legally used, managed, and protected. However, related debates in conservation, such as about enforcement, often overlook the details within national legislation that define which specific acts are illegal, the conditions under which laws apply, and how they are sanctioned. Based on a review of 90 wildlife laws in 8 high-biodiversity countries with different legal systems, we developed a taxonomy that describes all types of wildlife offenses in those countries. The 511 offenses are organized into a hierarchical taxonomy that scholars and practitioners can use to help conduct legal analyses. This is significant amidst competing calls to strengthen, deregulate, and reform wildlife legislation, particularly in response to fears over zoonotic threats and large-scale biodiversity loss. It can be used to provide more nuance legal analyses and facilitate like-for-like comparisons across countries, informing processes to redraft conservation laws, review deregulation efforts, close loopholes, and harmonize legislation across jurisdictions. We applied the taxonomy in a comparison of sanctions in 8 countries for hunting a protected species. We found not only huge ranges in fines (US$0 to $200,000) and imprisonment terms (1.5 years to life imprisonment), but also fundamentally different approaches to designing sanctions for wildlife offenses. The taxonomy also illustrates how future legal taxonomies can be developed for other environmental issues (e.g., invasive species, protected areas).  相似文献   
276.
It is widely accepted that the main driver of the observed decline in biological diversity is increasing human pressure on Earth's ecosystems. However, the spatial patterns of change in human pressure and their relation to conservation efforts are less well known. We developed a spatially and temporally explicit map of global change in human pressure over 2 decades between 1990 and 2010 at a resolution of 10 km2. We evaluated 22 spatial data sets representing different components of human pressure and used them to compile a temporal human pressure index (THPI) based on 3 data sets: human population density, land transformation, and electrical power infrastructure. We investigated how the THPI within protected areas was correlated to International Union for Conservation of Nature (IUCN) management categories and the human development index (HDI) and how the THPI was correlated to cumulative pressure on the basis of the original human footprint index. Since the early 1990s, human pressure increased 64% of the terrestrial areas; the largest increases were in Southeast Asia. Protected areas also exhibited overall increases in human pressure, the degree of which varied with location and IUCN management category. Only wilderness areas and natural monuments (management categories Ib and III) exhibited decreases in pressure. Protected areas not assigned any category exhibited the greatest increases. High HDI values correlated with greater reductions in pressure across protected areas, while increasing age of the protected area correlated with increases in pressure. Our analysis is an initial step toward mapping changes in human pressure on the natural world over time. That only 3 data sets could be included in our spatio‐temporal global pressure map highlights the challenge to measuring pressure changes over time. Mapeo del Cambio en la Presión Humana Global en Tierra y Dentro de Áreas Protegidas  相似文献   
277.
The threat posed by large carnivores to livestock and humans makes peaceful coexistence between them difficult. Effective implementation of conservation laws and policies depends on the attitudes of local residents toward the target species. There are many known correlates of human attitudes toward carnivores, but they have only been assessed at the scale of the individual. Because human societies are organized hierarchically, attitudes are presumably influenced by different factors at different scales of social organization, but this scale dependence has not been examined. We used structured interview surveys to quantitatively assess the attitudes of a Buddhist pastoral community toward snow leopards (Panthera uncia) and wolves (Canis lupus). We interviewed 381 individuals from 24 villages within 6 study sites across the high‐elevation Spiti Valley in the Indian Trans‐Himalaya. We gathered information on key explanatory variables that together captured variation in individual and village‐level socioeconomic factors. We used hierarchical linear models to examine how the effect of these factors on human attitudes changed with the scale of analysis from the individual to the community. Factors significant at the individual level were gender, education, and age of the respondent (for wolves and snow leopards), number of income sources in the family (wolves), agricultural production, and large‐bodied livestock holdings (snow leopards). At the community level, the significant factors included the number of smaller‐bodied herded livestock killed by wolves and mean agricultural production (wolves) and village size and large livestock holdings (snow leopards). Our results show that scaling up from the individual to higher levels of social organization can highlight important factors that influence attitudes of people toward wildlife and toward formal conservation efforts in general. Such scale‐specific information can help managers apply conservation measures at appropriate scales. Our results reiterate the need for conflict management programs to be multipronged. Factores Multi‐Escala que Afectan las Actitudes Humanas hacia Leopardos de las Nieves y Lobos  相似文献   
278.
Permeability of Roads to Movement of Scrubland Lizards and Small Mammals   总被引:2,自引:0,他引:2  
A primary objective of road ecology is to understand and predict how roads affect connectivity of wildlife populations. Road avoidance behavior can fragment populations, whereas lack of road avoidance can result in high mortality due to wildlife‐vehicle collisions. Many small animal species focus their activities to particular microhabitats within their larger habitat. We sought to assess how different types of roads affect the movement of small vertebrates and to explore whether responses to roads may be predictable on the basis of animal life history or microhabitat preferences preferences. We tracked the movements of fluorescently marked animals at 24 sites distributed among 3 road types: low‐use dirt, low‐use secondary paved, and rural 2‐lane highway. Most data we collected were on the San Diego pocket mouse (Chaetodipus fallax), cactus mouse (Peromyscus eremicus), western fence lizard (Sceloporus occidentalis), orange‐throated whiptail (Aspidoscelis hyperythra), Dulzura kangaroo rat (Dipodomys simulans) (dirt, secondary paved), and deer mouse (Peromyscus maniculatus) (highway only). San Diego pocket mice and cactus mice moved onto dirt roads but not onto a low‐use paved road of similar width or onto the highway, indicating they avoid paved road substrate. Both lizard species moved onto the dirt and secondary paved roads but avoided the rural 2‐lane rural highway, indicating they may avoid noise, vibration, or visual disturbance from a steady flow of traffic. Kangaroo rats did not avoid the dirt or secondary paved roads. Overall, dirt and secondary roads were more permeable to species that prefer to forage or bask in open areas of their habitat, rather than under the cover of rocks or shrubs. However, all study species avoided the rural 2‐lane highway. Our results suggest that microhabitat use preferences and road substrate help predict species responses to low‐use roads, but roads with heavy traffic may deter movement of a much wider range of small animal species.  相似文献   
279.
SUMMARY

During eight years, the Biological Research Center of the Northwest promoted the federal decrees to attain legal protection of three key zones for biodiversity conservation in Mexico: La Sierra de La Laguna, El Desierto del Vizcaíno, and E1 Archipiélago Revillagigedo Biosphere Reserves. In this work, we discuss the biological and socioeconomical importance of these three regions, the necessary steps to attain a Presidential decree in Mexico, and the required strategies to promote local and political support for each decree. In a country like Mexico, the promotion of one Presidential decree to declare a zone as a biosphere reserve must successfully address two different goals: the technical and the political. The technical phase can be successfully completed by a research centre or university in 6 to 12 months; while the political phase may or may not be successfully completed. If successful, in our experience, it can be attained with 2 to 96 months of continuous efforts.  相似文献   
280.
For species with five or more sightings, quantitative techniques exist to test whether a species is extinct on the basis of distribution of sightings. However, 70% of purportedly extinct mammals are known from fewer than five sightings, and such models do not include some important indicators of the likelihood of extinction such as threats, biological traits, search effort, and demography. Previously, we developed a quantitative method that we based on species' traits in which we used Cox proportional hazards regression to calculate the probability of rediscovery of species regarded as extinct. Here, we used two versions of the Cox regression model to determine the probability of extinction in purportedly extinct mammals and compared the results of these two models with those of stationary Poisson, nonparametric, and Weibull sighting-distribution models. For mammals with five or more sightings, the stationary Poisson model categorized all but two critically endangered (flagged as possibly extinct) species in our data set as extinct, and results with this model were consistent with current categories of the International Union for the Conservation of Nature. The scores of probability of rediscovery for individual species in one version of our Cox regression model were correlated with scores assigned by the stationary Poisson model. Thus, we used this Cox regression model to determine the probability of extinction of mammals with sparse records. On the basis of the Cox regression model, the most likely mammals to be rediscovered were the Montane monkey-faced bat (Pteralopex pulchra), Armenian myotis (Myotis hajastanicus), Alcorn's pocket gopher (Pappogeomys alcorni), and Wimmer's shrew (Crocidura wimmeri). The Cox model categorized two species that have recently disappeared as extinct: the baiji (Lipotes vexillifer) and the Christmas Island pipistrelle (Pipistrellus murrayi). Our new method can be used to test whether species with few records or recent last-sighting dates are likely to be extinct.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号