首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1216篇
  免费   446篇
  国内免费   4篇
安全科学   3篇
废物处理   2篇
环保管理   6篇
综合类   31篇
基础理论   1588篇
污染及防治   14篇
评价与监测   5篇
社会与环境   14篇
灾害及防治   3篇
  2023年   91篇
  2022年   87篇
  2021年   117篇
  2020年   118篇
  2019年   108篇
  2018年   90篇
  2017年   119篇
  2016年   109篇
  2015年   132篇
  2014年   140篇
  2013年   122篇
  2012年   86篇
  2011年   97篇
  2010年   120篇
  2009年   25篇
  2008年   49篇
  2007年   3篇
  2006年   6篇
  2005年   4篇
  2004年   4篇
  2003年   6篇
  2002年   8篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1983年   1篇
  1982年   2篇
  1975年   1篇
排序方式: 共有1666条查询结果,搜索用时 984 毫秒
391.
Abstract: Unsustainable hunting of wildlife for food empties tropical forests of many species critical to forest maintenance and livelihoods of forest people. Extractive industries, including logging, can accelerate exploitation of wildlife by opening forests to hunters and creating markets for bushmeat. We monitored human demographics, bushmeat supply in markets, and household bushmeat consumption in five logging towns in the northern Republic of Congo. Over 6 years we recorded 29,570 animals in town markets and collected 48,920 household meal records. Development of industrial logging operations led to a 69% increase in the population of logging towns and a 64% increase in bushmeat supply. The immigration of workers, jobseekers, and their families altered hunting patterns and was associated with increased use of wire snares and increased diversity in the species hunted and consumed. Immigrants hunted 72% of all bushmeat, which suggests the short‐term benefits of hunting accrue disproportionately to “outsiders” to the detriment of indigenous peoples who have prior, legitimate claims to wildlife resources. Our results suggest that the greatest threat of logging to biodiversity may be the permanent urbanization of frontier forests. Although enforcement of hunting laws and promotion of alternative sources of protein may help curb the pressure on wildlife, the best strategy for biodiversity conservation may be to keep saw mills and the towns that develop around them out of forests.  相似文献   
392.
The International Union for Conservation of Nature (IUCN) Red List Index (RLI) is recognized as one of the key indicators of trends in the status of species. The red‐list assessment done by Finnish authorities of species in Finland is taxonomically one of the most extensive national assessments. We used the Finnish Red Lists from 2000 and 2010 to calculate for the first time the national RLIs for 11 taxonomic groups at different trophic levels and with different life cycles. The red‐list index is calculated on the basis of changes in red‐list categories and indicates trends in the status of biological diversity of sets of species. The RLI value ranges from 0 to 1. The lower the value the faster the set of species is heading toward extinction. If the value is 1, all species in the set are least concern and if the value is 0, all species are (regionally) extinct. The overall RLI of Finnish species decreased. This means that, in Finland, these taxonomic groups were heading toward extinction faster in 2010 than in 2000. Of the analyzed groups of organisms, RLIs of 5 decreased and RLIs of 6 increased. At the national level, the RLIs and status trends varied markedly between species groups. Thus, we concluded that generalizations on the basis of RLIs of a few taxa only may yield a biased view of ongoing trends in the status of biological diversity at the species level. In addition, one overall RLI that includes many different species groups may also be misleading if variation in RLI among species groups is not considered and if RLI values are not presented separately for each group. Aplicación del Índice de la Lista Roja a Nivel Nacional para Grupos de Especies Múltiples  相似文献   
393.
Globally expanding human land use sets constantly increasing pressure for maintenance of biological diversity and functioning ecosystems. To fight the decline of biological diversity, conservation science has broken ground with methods such as the operational model of systematic conservation planning (SCP), which focuses on design and on‐the‐ground implementation of conservation areas. The most commonly used method in SCP is reserve selection that focuses on the spatial design of reserve networks and their expansion. We expanded these methods by introducing another form of spatial allocation of conservation effort relevant for land‐use zoning at the landscape scale that avoids negative ecological effects of human land use outside protected areas. We call our method inverse spatial conservation prioritization. It can be used to identify areas suitable for economic development while simultaneously limiting total ecological and environmental effects of that development at the landscape level by identifying areas with highest economic but lowest ecological value. Our method is not based on a priori targets, and as such it is applicable to cases where the effects of land use on, for example, individual species or ecosystem types are relatively small and would not lead to violation of regional or national conservation targets. We applied our method to land‐use allocation to peat mining. Our method identified a combination of profitable production areas that provides the needed area for peat production while retaining most of the landscape‐level ecological value of the ecosystem. The results of this inverse spatial conservation prioritization are being used in land‐use zoning in the province of Central Finland.  相似文献   
394.
Abstract: The acquisition or designation of new protected areas is usually based on criteria for representation of different ecosystems or land‐cover classes, and it is unclear how wellthreatened species are conserved within protected‐area networks. Here, we assessed how Australia's terrestrial protected‐area system (89 million ha, 11.6% of the continent) overlaps with the geographic distributions of threatened species and compared this overlap against a model that randomly placed protected areas across the continent and a spatially efficient model that placed protected areas across the continent to maximize threatened species’ representation within the protected‐area estate. We defined the minimum area needed to conserve each species on the basis of the species’ range size. We found that although the current configuration of protected areas met targets for representation of a given percentage of species’ ranges better than a random selection of areas, 166 (12.6%) threatened species occurred entirely outside protected areas and target levels of protection were met for only 259 (19.6%) species. Critically endangered species were among those with the least protection; 12 (21.1%) species occurred entirely outside protected areas. Reptiles and plants were the most poorly represented taxonomic groups, and amphibians the best represented. Spatial prioritization analyses revealed that an efficient protected‐area system of the same size as the current protected‐area system (11.6% of the area of Australia) could meet representation targets for 1272 (93.3%) threatened species. Moreover, the results of these prioritization analyses showed that by protecting 17.8% of Australia, all threatened species could reach target levels of representation, assuming all current protected areas are retained. Although this amount of area theoretically could be protected, existing land uses and the finite resources available for conservation mean land acquisition may not be possible or even effective for the recovery of threatened species. The optimal use of resources must balance acquisition of new protected areas, where processes that threaten native species are mitigated by the change in ownership or on‐ground management jurisdiction, and management of threatened species inside and outside the existing protected‐area system.  相似文献   
395.
Abstract: Understanding the risk of extinction of a single population is an important problem in both theoretical and applied ecology. Local extinction risk depends on several factors, including population size, demographic or environmental stochasticity, natural catastrophe, or the loss of genetic diversity. The probability of local extinction may also be higher in low‐quality sink habitats than in high‐quality source habitats. We tested this hypothesis by comparing local extinction rates of 15 species of Odonata (dragonflies and damselflies) between 1930–1975 and 1995–2003 in central Finland. Local extinction rates were higher in low‐quality than in high‐quality habitats. Nevertheless, for the three most common species there were no differences in extinction rates between low‐ and high‐quality habitats. Our results suggest that a good understanding of habitat quality is crucial for the conservation of species in heterogeneous landscapes.  相似文献   
396.
Abstract: Competitive species interactions may contribute to population declines. Purportedly, Red‐bellied Woodpeckers (Melanerpes carolinus), a common species, and Red‐cockaded Woodpeckers (Picoides borealis), an endangered species, compete for roosting and nesting cavities in living pine trees. To determine whether behavioral interactions measured at the individual level manifest themselves at the population level, we conducted field experiments designed to test whether the presence of Red‐bellied Woodpeckers resulted in a decrease in fitness to Red‐cockaded Woodpeckers. As part of a 4‐year study examining the nature of interspecific interactions in two populations of Red‐cockaded Woodpeckers (one stable, the Apalachicola Ranger District; one declining, the Wakulla Ranger District) in the Apalachicola National Forest, Florida, we conducted a set of Red‐bellied Woodpecker removal experiments. Paradoxically, following the removal of Red‐bellied Woodpeckers, we observed decreases in Red‐cockaded Woodpecker group size, proportion of nests that were successful, and proportion of individuals remaining on territories. Removal of Red‐bellied Woodpeckers may have exaggerated the immigration rate of Red‐bellied Woodpeckers to Red‐cockaded Woodpecker territories. The Red‐cockaded Woodpeckers in the Apalachicola Ranger District likely can withstand pressure from immigrating Red‐bellied Woodpeckers given that their population has remained relatively stable despite the presence of Red‐bellied Woodpeckers. A major factor of population persistence in the Wakulla Ranger District was the high turnover rate of adult female Red‐cockaded Woodpeckers, a phenomenon that was exacerbated by removal of Red‐bellied Woodpeckers. Relying solely on observations of apparently competitive interactions between individuals may not necessarily provide information about population‐level outcomes. Paradoxically, removing species that appear to be competitors may harm species of concern.  相似文献   
397.
Abstract: Rapidly changing landscapes have spurred the need for quantitative methods for conservation assessment and planning that encompass large spatial extents. We devised and tested a multispecies framework for conservation planning to complement single‐species assessments and ecosystem‐level approaches. Our framework consisted of 4 elements: sampling to effectively estimate population parameters, measuring how human activity affects landscapes at multiple scales, analyzing the relation between landscape characteristics and individual species occurrences, and evaluating and comparing the responses of multiple species to landscape modification. We applied the approach to a community of terrestrial birds across 25,000 km2 with a range of intensities of human development. Human modification of land cover, road density, and other elements of the landscape, measured at multiple spatial extents, had large effects on occupancy of the 67 species studied. Forest composition within 1 km of points had a strong effect on occupancy of many species and a range of negative, intermediate, and positive associations. Road density within 1 km of points, percent evergreen forest within 300 m, and distance from patch edge were also strongly associated with occupancy for many species. We used the occupancy results to group species into 11 guilds that shared patterns of association with landscape characteristics. Our multispecies approach to conservation planning allowed us to quantify the trade‐offs of different scenarios of land‐cover change in terms of species occupancy.  相似文献   
398.
Abstract: The Tiwi people of northern Australia have managed natural resources continuously for 6000–8000 years. Tiwi management objectives and outcomes may reflect how they gather information about the environment. We qualitatively analyzed Tiwi documents and management techniques to examine the relation between the social and physical environment of decision makers and their decision‐making strategies. We hypothesized that principles of bounded rationality, namely, the use of efficient rules to navigate complex decision problems, explain how Tiwi managers use simple decision strategies (i.e., heuristics) to make robust decisions. Tiwi natural resource managers reduced complexity in decision making through a process that gathers incomplete and uncertain information to quickly guide decisions toward effective outcomes. They used management feedback to validate decisions through an information loop that resulted in long‐term sustainability of environmental use. We examined the Tiwi decision‐making processes relative to management of barramundi (Lates calcarifer) fisheries and contrasted their management with the state government's management of barramundi. Decisions that enhanced the status of individual people and their attainment of aspiration levels resulted in reliable resource availability for Tiwi consumers. Different decision processes adopted by the state for management of barramundi may not secure similarly sustainable outcomes.  相似文献   
399.
Abstract: Rare or narrowly distributed species may be threatened by stressors to which they have never been exposed or for which data are very limited. In such cases the species response cannot be predicted on the basis of directly measured data, but may be inferred from the response of one or more appropriate surrogate species. Here, I propose a practical way to use the stressor response of one or more surrogate species to develop a working hypothesis or model of the stressor response of the target species. The process has 4 steps: (1) identify one or more candidate surrogate species, (2) model the relationship between the stressor and the response variable of interest for the surrogate species, (3) adapt the stressor–response relationship from the surrogate species to a model for the target species, possibly using Bayesian methods, and (4) incorporate additional data as they become available and adjust the response model of the target species appropriately. I applied the approach to an endangered fish species, the amber darter (Percina antesella), which is potentially threatened by urbanization. I used a Bayesian approach to combine data from a surrogate species (the bronze darter[Percina palmaris]) with available data for the amber darter to produce a model of expected amber darter response. Although this approach requires difficult decisions on the part of the manager, especially in the selection of surrogate species, its value lies in the fact that all assumptions are clearly stated in the form of hypotheses, which may be scrutinized and tested. It therefore provides a rational basis for instituting management policy even in the face of considerable uncertainty.  相似文献   
400.
Abstract: High‐latitude coral reefs (HLRs) are potentially vulnerable marine ecosystems facing well‐documented threats to tropical reefs and exposure to suboptimal temperatures and insolation. In addition, because of their geographic isolation, HLRs may have poor or erratic larval connections to tropical reefs and a reduced genetic diversity and capacity to respond to environmental change. On Australia's east coast, a system of marine protected areas (MPAs) has been established with the aim of conserving HLRs in part by providing sources of colonizing larvae. To examine the effectiveness of existing MPAs as networks for dispersal, we compared genetic diversity within and among the HLRs in MPAs and between these HLRs and tropical reefs on the southern Great Barrier Reef (GBR). The 2 coral species best represented on Australian HLRs (the brooding Pocillopora damicornis and the broadcast‐spawning Goniastrea australensis) exhibited sharply contrasting patterns of diversity and connectedness. For P. damicornis, the 8‐locus genetic and genotypic diversity declined dramatically with increasing latitude (Na= 3.6–1.2, He= 0.3–0.03, Ng:N = 0.87–0.06), although population structure was consistent with recruitment derived largely from sexual reproduction (Go:Ge= 1.28–0.55). Genetic differentiation was high among the HLRs (FST[SD]= 0.32 [0.08], p < 0.05) and between the GBR and the HLRs (FST= 0.24 [0.06], p < 0.05), which indicates these temperate populations are effectively closed. In contrast for G. australensis, 9‐locus genetic diversity was more consistent across reefs (Na= 4.2–3.9, He= 0.3–0.26, Ng:N = 1–0.61), and there was no differentiation among regions (FST= 0.00 [0.004], p > 0.05), which implies the HLRs and the southern GBR are strongly interconnected. Our results demonstrate that although the current MPAs appear to capture most of the genetic diversity present within the HLR systems for these 2 species, their sharply contrasting patterns of connectivity indicate some taxa, such as P. damicornis, will be more vulnerable than others, and this disparity will provide challenges for future management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号