首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1316篇
  免费   444篇
  国内免费   2篇
安全科学   4篇
废物处理   2篇
环保管理   7篇
综合类   33篇
基础理论   1677篇
污染及防治   15篇
评价与监测   5篇
社会与环境   14篇
灾害及防治   5篇
  2024年   87篇
  2023年   91篇
  2022年   87篇
  2021年   117篇
  2020年   121篇
  2019年   110篇
  2018年   90篇
  2017年   120篇
  2016年   110篇
  2015年   132篇
  2014年   141篇
  2013年   122篇
  2012年   87篇
  2011年   97篇
  2010年   120篇
  2009年   25篇
  2008年   49篇
  2007年   3篇
  2006年   6篇
  2005年   4篇
  2004年   4篇
  2003年   6篇
  2002年   8篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   3篇
  1983年   1篇
  1982年   2篇
  1975年   1篇
排序方式: 共有1762条查询结果,搜索用时 15 毫秒
421.
    
Anthropogenic climate change is a key threat to global biodiversity. To inform strategic actions aimed at conserving biodiversity as climate changes, conservation planners need early warning of the risks faced by different species. The IUCN Red List criteria for threatened species are widely acknowledged as useful risk assessment tools for informing conservation under constraints imposed by limited data. However, doubts have been expressed about the ability of the criteria to detect risks imposed by potentially slow‐acting threats such as climate change, particularly because criteria addressing rates of population decline are assessed over time scales as short as 10 years. We used spatially explicit stochastic population models and dynamic species distribution models projected to future climates to determine how long before extinction a species would become eligible for listing as threatened based on the IUCN Red List criteria. We focused on a short‐lived frog species (Assa darlingtoni) chosen specifically to represent potential weaknesses in the criteria to allow detailed consideration of the analytical issues and to develop an approach for wider application. The criteria were more sensitive to climate change than previously anticipated; lead times between initial listing in a threatened category and predicted extinction varied from 40 to 80 years, depending on data availability. We attributed this sensitivity primarily to the ensemble properties of the criteria that assess contrasting symptoms of extinction risk. Nevertheless, we recommend the robustness of the criteria warrants further investigation across species with contrasting life histories and patterns of decline. The adequacy of these lead times for early warning depends on practicalities of environmental policy and management, bureaucratic or political inertia, and the anticipated species response times to management actions. Detección del Riesgo de Extinción a partir del Cambio Climático por medio del Criterio de la Lista Roja de la UICNKeith et al.  相似文献   
422.
    
Farmland diversification practices (i.e., methods used to produce food sustainably by enhancing biodiversity in cropping systems) are sometimes considered beneficial to both agriculture and biodiversity, but most studies of these practices rely on species richness, diversity, or abundance as a proxy for habitat quality. Biodiversity assessments may miss early clues that populations are imperiled when species presence does not imply persistence. Physiological stress indicators may help identify low-quality habitats before population declines occur. We explored how avian stress indicators respond to on-farm management practices and surrounding seminatural area (1-km radius) across 21 California strawberry farms. We examined whether commonly used biodiversity metrics correlate with stress responses in wild birds. We used ∼1000 blood and feather samples and body mass and wing chord measurements, mostly from passerines, to test the effects of diversification practices on four physiological stress indicators: heterophil to lymphocyte ratios (H:L), body condition, hematocrit values, and feather growth rates of individual birds. We then tested the relationship between physiological stress indicators and species richness, abundance, occurrence, and diversity derived from 285 bird point count surveys. After accounting for other biological drivers, landscape context mediated the effect of local farm management on H:L and body condition. Local diversification practices were associated with reduced individual stress in intensive agricultural landscapes but increased it in landscapes surrounded by relatively more seminatural area. Feathers grew more slowly in landscapes dominated by strawberry production, suggesting that nutritional condition was lower here than in landscapes with more crop types and seminatural areas. We found scant evidence that species richness, abundance, occurrence, or diversity metrics were correlated with the individual's physiological stress, suggesting that reliance on these metrics may obscure the impacts of management on species persistence. Our findings underscore the importance of considering landscape context when designing local management strategies to promote wildlife conservation.  相似文献   
423.
Abstract: The acquisition or designation of new protected areas is usually based on criteria for representation of different ecosystems or land‐cover classes, and it is unclear how wellthreatened species are conserved within protected‐area networks. Here, we assessed how Australia's terrestrial protected‐area system (89 million ha, 11.6% of the continent) overlaps with the geographic distributions of threatened species and compared this overlap against a model that randomly placed protected areas across the continent and a spatially efficient model that placed protected areas across the continent to maximize threatened species’ representation within the protected‐area estate. We defined the minimum area needed to conserve each species on the basis of the species’ range size. We found that although the current configuration of protected areas met targets for representation of a given percentage of species’ ranges better than a random selection of areas, 166 (12.6%) threatened species occurred entirely outside protected areas and target levels of protection were met for only 259 (19.6%) species. Critically endangered species were among those with the least protection; 12 (21.1%) species occurred entirely outside protected areas. Reptiles and plants were the most poorly represented taxonomic groups, and amphibians the best represented. Spatial prioritization analyses revealed that an efficient protected‐area system of the same size as the current protected‐area system (11.6% of the area of Australia) could meet representation targets for 1272 (93.3%) threatened species. Moreover, the results of these prioritization analyses showed that by protecting 17.8% of Australia, all threatened species could reach target levels of representation, assuming all current protected areas are retained. Although this amount of area theoretically could be protected, existing land uses and the finite resources available for conservation mean land acquisition may not be possible or even effective for the recovery of threatened species. The optimal use of resources must balance acquisition of new protected areas, where processes that threaten native species are mitigated by the change in ownership or on‐ground management jurisdiction, and management of threatened species inside and outside the existing protected‐area system.  相似文献   
424.
         下载免费PDF全文
Islands present a unique scenario in conservation biology, offering refuge yet imposing limitations on insular populations. The Kimberley region of northwestern Australia has more than 2500 islands that have recently come into focus as substantial conservation resources. It is therefore of great interest for managers to understand the driving forces of genetic structure of species within these island archipelagos. We used the ubiquitous bar‐shouldered skink (Ctenotus inornatus) as a model species to represent the influence of landscape factors on genetic structure across the Kimberley islands. On 41 islands and 4 mainland locations in a remote area of Australia, we genotyped individuals across 18 nuclear (microsatellite) markers. Measures of genetic differentiation and diversity were used in two complementary analyses. We used circuit theory and Mantel tests to examine the influence of the landscape matrix on population connectivity and linear regression and model selection based on Akaike's information criterion to investigate landscape controls on genetic diversity. Genetic differentiation between islands was best predicted with circuit‐theory models that accounted for the large difference in resistance to dispersal between land and ocean. In contrast, straight‐line distances were unrelated to either resistance distances or genetic differentiation. Instead, connectivity was determined by island‐hopping routes that allow organisms to minimize the distance of difficult ocean passages. Island populations of C. inornatus retained varying degrees of genetic diversity (NA = 1.83 – 7.39), but it was greatest on islands closer to the mainland, in terms of resistance‐distance units. In contrast, genetic diversity was unrelated to island size. Our results highlight the potential for islands to contribute to both theoretical and applied conservation, provide strong evidence of the driving forces of population structure within undisturbed landscapes, and identify the islands most valuable for conservation based on their contributions to gene flow and genetic diversity.  相似文献   
425.
    
The extraordinary population growth of certain ungulate species is increasingly a concern in agroforestry areas because overabundance may negatively affect natural environments and human livelihoods. However, society may have negative perceptions of killing wildlife to reduce their numbers and mitigate damage. We used an online survey that included a choice experiment to determine Spanish citizens’ (n = 190) preferences toward wildlife population control measures related to negative effects of ungulate overabundance (negative impacts on vegetation and other wildlife species and disease transmission to livestock) in 2 agroforestry national parks in Spain. We used latent-class and willingness-to-pay in space models to analyze survey results. Two percent of respondents thought a national park should have no human intervention even if lack of management may cause environmental degradation, whereas 95% of respondents favored efforts to reduce damage caused by overabundant ungulate species. We estimated human well-being losses of survey respondents when sustainable effects of deer overabundance on the environment became unsustainable effects and well-being gains when sustainable effects transitioned to no visible effects. We found that the type of wildlife-control program was a very relevant issue for the respondents; indirect control in which killing was avoided was the preferred action. Sixty-six percent of respondents agreed with the option of hunters paying for culling animals to reduce ungulate impacts rather than management cost coming out of taxes, whereas 19% of respondents were against this option and willing to pay for other solutions in national parks. Our results suggest that killing wildlife in national parks could be a socially acceptable tool to manage overabundance problems in certain contexts, but it could also generate social conflicts.  相似文献   
426.
         下载免费PDF全文
The efficacy of protected areas varies, partly because socioeconomic factors are not sufficiently considered in planning and management. Although integrating socioeconomic factors into systematic conservation planning is increasingly advocated, research is needed to progress from recognition of these factors to incorporating them effectively in spatial prioritization of protected areas. We evaluated 2 key aspects of incorporating socioeconomic factors into spatial prioritization: treatment of socioeconomic factors as costs or objectives and treatment of stakeholders as a single group or multiple groups. Using as a case study the design of a system of no‐take marine protected areas (MPAs) in Kubulau, Fiji, we assessed how these aspects affected the configuration of no‐take MPAs in terms of trade‐offs between biodiversity objectives, fisheries objectives, and equity in catch losses among fisher stakeholder groups. The achievement of fisheries objectives and equity tended to trade‐off concavely with increasing biodiversity objectives, indicating that it is possible to achieve low to mid‐range biodiversity objectives with relatively small losses to fisheries and equity. Importantly, the extent of trade‐offs depended on the method used to incorporate socioeconomic data and was least severe when objectives were set for each fisher stakeholder group explicitly. We found that using different methods to incorporate socioeconomic factors that require similar data and expertise can result in plans with very different impacts on local stakeholders.  相似文献   
427.
    
Although bycatch of seabirds and other long-lived species is a critical conservation issue in world fisheries, case studies documenting significant reductions in the mortality of these low-productivity species in a fishery are rare. We studied progress toward seabird conservation in the Alaskan longline fisheries, one of the largest and most diverse demersal fisheries. We generated annual seabird bycatch rates in 4 target fisheries and all fisheries combined from 23 years of fisheries observer data. We used 0-inflated negative binomial models to evaluate variables influencing seabird bycatch per unit effort (BPUE) in 2 target fisheries. Following adoption of streamer lines, at first voluntarily and then mandatorily, seabird BPUE was reduced by 77–90%, preventing mortality of thousands of birds per year. Despite this, BPUE increased significantly in 2 of 4 target fisheries since streamer lines were adopted. Although night setting yielded significant reductions (74–97%) in seabird BPUE and significant increases (7–11%) in fish catch per unit effort over daytime setting, nighttime setting increased the BPUE of Northern Fulmar (Fulmarus glacialis) by 40% and nontarget fish species by 5–17%. Thus, best practices to prevent seabird mortalities in longline fisheries varied by species assemblage and fishery. Our results inform global efforts toward fisheries bycatch reduction by illustrating that successful conservation requires fishery-specific solutions, strong industry support, constant vigilance in analysis and reporting observer data, and ongoing outreach to fleets, especially to vessels with anomalously high BPUE.  相似文献   
428.
It is well documented that hydropower plants can affect the dynamics of fish populations through landscape alterations and the creation of new barriers. Less emphasis has been placed on the examination of the genetic consequences for fish populations of the construction of dams. The relatively few studies that focus on genetics often do not consider colonization history and even fewer tend to use this information for conservation purposes. As a case study, we used a 3‐pronged approach to study the influence of historical processes, contemporary landscape features, and potential future anthropogenic changes in landscape on the genetic diversity of a fish metapopulation. Our goal was to identify the metapopulation's main attributes, detect priority areas for conservation, and assess the consequences of the construction of hydropower plants for the persistence of the metapopulation. We used microsatellite markers and coalescent approaches to examine historical colonization processes, traditional population genetics, and simulations of future populations under alternate scenarios of population size reduction and gene flow. Historical gene flow appeared to have declined relatively recently and contemporary populations appeared highly susceptible to changes in landscape. Gene flow is critical for population persistence. We found that hydropower plants could lead to a rapid reduction in number of alleles and to population extirpation 50–80 years after their construction. More generally, our 3‐pronged approach for the analyses of empirical genetic data can provide policy makers with information on the potential impacts of landscape changes and thus lead to more robust conservation efforts.  相似文献   
429.
Marine hydrokinetic power projects will operate as marine environments change in response to increased atmospheric carbon dioxide concentrations. We considered how tidal power development and stressors resulting from climate change may affect Puget Sound species listed under the U.S. Endangered Species Act (ESA) and their food web. We used risk tables to assess the singular and combined effects of tidal power development and climate change. Tidal power development and climate change posed risks to ESA‐listed species, and risk increased with incorporation of the effects of these stressors on predators and prey of ESA‐listed species. In contrast, results of a model of strikes on ESA‐listed species from turbine blades suggested that few ESA‐listed species are likely to be killed by a commercial‐scale tidal turbine array. We applied scenarios to a food web model of Puget Sound to explore the effects of tidal power and climate change on ESA‐listed species using more quantitative analytical techniques. To simulate development of tidal power, we applied results of the blade strike model. To simulate environmental changes over the next 50 years, we applied scenarios of change in primary production, plankton community structure, dissolved oxygen, ocean acidification, and freshwater flooding events. No effects of tidal power development on ESA‐listed species were detected from the food web model output, but the effects of climate change on them and other members of the food web were large. Our analyses exemplify how natural resource managers might assess environmental effects of marine technologies in ways that explicitly incorporate climate change and consider multiple ESA‐listed species in the context of their ecological community. Estimación de los Efectos de Proyectos de Energía de las Mareas y el Cambio Climático sobre Especies Marinas Amenazadas y en Peligro y su Red Alimentaria  相似文献   
430.
Abstract: Photography, including remote imagery and camera traps, has contributed substantially to conservation. However, the potential to use photography to understand demography and inform policy is limited. To have practical value, remote assessments must be reasonably accurate and widely deployable. Prior efforts to develop noninvasive methods of estimating trait size have been motivated by a desire to answer evolutionary questions, measure physiological growth, or, in the case of illegal trade, assess economics of horn sizes; but rarely have such methods been directed at conservation. Here I demonstrate a simple, noninvasive photographic technique and address how knowledge of values of individual‐specific metrics bears on conservation policy. I used 10 years of data on juvenile moose (Alces alces) to examine whether body size and probability of survival are positively correlated in cold climates. I investigated whether the presence of mothers improved juvenile survival. The posited latter relation is relevant to policy because harvest of adult females has been permitted in some Canadian and American jurisdictions under the assumption that probability of survival of young is independent of maternal presence. The accuracy of estimates of head sizes made from photographs exceeded 98%. The estimates revealed that overwinter juvenile survival had no relation to the juvenile's estimated mass (p < 0.64) and was more strongly associated with maternal presence (p < 0.02) than winter snow depth (p < 0.18). These findings highlight the effects on survival of a social dynamic (the mother‐young association) rather than body size and suggest a change in harvest policy will increase survival. Furthermore, photographic imaging of growth of individual juvenile muskoxen (Ovibos moschatus) over 3 Arctic winters revealed annual variability in size, which supports the idea that noninvasive monitoring may allow one to detect how some environmental conditions ultimately affect body growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号