首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   544篇
  免费   207篇
  国内免费   1篇
废物处理   1篇
环保管理   3篇
综合类   4篇
基础理论   736篇
污染及防治   4篇
评价与监测   2篇
社会与环境   2篇
  2023年   59篇
  2022年   52篇
  2021年   64篇
  2020年   65篇
  2019年   47篇
  2018年   36篇
  2017年   56篇
  2016年   46篇
  2015年   69篇
  2014年   44篇
  2013年   49篇
  2012年   29篇
  2011年   39篇
  2010年   47篇
  2009年   11篇
  2008年   27篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1991年   1篇
  1985年   1篇
  1975年   1篇
排序方式: 共有752条查询结果,搜索用时 31 毫秒
121.
Natural‐resource managers and other conservation practitioners are under unprecedented pressure to categorize and quantify the vulnerability of natural systems based on assessment of the exposure, sensitivity, and adaptive capacity of species to climate change. Despite the urgent need for these assessments, neither the theoretical basis of adaptive capacity nor the practical issues underlying its quantification has been articulated in a manner that is directly applicable to natural‐resource management. Both are critical for researchers, managers, and other conservation practitioners to develop reliable strategies for assessing adaptive capacity. Drawing from principles of classical and contemporary research and examples from terrestrial, marine, plant, and animal systems, we examined broadly the theory behind the concept of adaptive capacity. We then considered how interdisciplinary, trait‐ and triage‐based approaches encompassing the oft‐overlooked interactions among components of adaptive capacity can be used to identify species and populations likely to have higher (or lower) adaptive capacity. We identified the challenges and value of such endeavors and argue for a concerted interdisciplinary research approach that combines ecology, ecological genetics, and eco‐physiology to reflect the interacting components of adaptive capacity. We aimed to provide a basis for constructive discussion between natural‐resource managers and researchers, discussions urgently needed to identify research directions that will deliver answers to real‐world questions facing resource managers, other conservation practitioners, and policy makers. Directing research to both seek general patterns and identify ways to facilitate adaptive capacity of key species and populations within species, will enable conservation ecologists and resource managers to maximize returns on research and management investment and arrive at novel and dynamic management and policy decisions.  相似文献   
122.
Globally, extensive marine areas important for biodiversity conservation and ecosystem functioning are undergoing exploration and extraction of oil and natural gas resources. Such operations are expanding to previously inaccessible deep waters and other frontier regions, while conservation‐related legislation and planning is often lacking. Conservation challenges arising from offshore hydrocarbon development are wide‐ranging. These challenges include threats to ecosystems and marine species from oil spills, negative impacts on native biodiversity from invasive species colonizing drilling infrastructure, and increased political conflicts that can delay conservation actions. With mounting offshore operations, conservationists need to urgently consider some possible opportunities that could be leveraged for conservation. Leveraging options, as part of multi‐billion dollar marine hydrocarbon operations, include the use of facilities and costly equipment of the deep and ultra‐deep hydrocarbon industry for deep‐sea conservation research and monitoring and establishing new conservation research, practice, and monitoring funds and environmental offsetting schemes. The conservation community, including conservation scientists, should become more involved in the earliest planning and exploration phases and remain involved throughout the operations so as to influence decision making and promote continuous monitoring of biodiversity and ecosystems. A prompt response by conservation professionals to offshore oil and gas developments can mitigate impacts of future decisions and actions of the industry and governments. New environmental decision support tools can be used to explicitly incorporate the impacts of hydrocarbon operations on biodiversity into marine spatial and conservation plans and thus allow for optimum trade‐offs among multiple objectives, costs, and risks.  相似文献   
123.
One of the main goals of conservation biology is to understand the factors shaping variation in biodiversity across the planet. This understanding is critical for conservation planners to be able to develop effective conservation strategies. Although many studies have focused on species richness and the protection of rare and endemic species, less attention has been paid to the protection of the phylogenetic dimension of biodiversity. We explored how phylogenetic diversity, species richness, and phylogenetic community structure vary in seed plant communities along an elevational gradient in a relatively understudied high mountain region, the Dulong Valley, in southeastern Tibet, China. As expected, phylogenetic diversity was well correlated with species richness among the elevational bands and among communities. At the community level, evergreen broad‐leaved forests had the highest levels of species richness and phylogenetic diversity. Using null model analyses, we found evidence of nonrandom phylogenetic structure across the region. Evergreen broad‐leaved forests were phylogenetically overdispersed, whereas other vegetation types tended to be phylogenetically clustered. We suggest that communities with high species richness or overdispersed phylogenetic structure should be a focus for biodiversity conservation within the Dulong Valley because these areas may help maximize the potential of this flora to respond to future global change. In biodiversity hotspots worldwide, we suggest that the phylogenetic structure of a community may serve as a useful measure of phylogenetic diversity in the context of conservation planning.  相似文献   
124.
Effective conservation policies require comprehensive knowledge of biodiversity. However, knowledge shortfalls still remain, hindering possibilities to improve decision making and built such policies. During the last 2 decades, conservationists have made great efforts to allocate resources as efficiently as possible but have rarely considered the idea that if research investments are also strategically allocated, it would likely fill knowledge gaps while simultaneously improving conservation actions. Therefore, prioritizing areas where both conservation and research actions could be conducted becomes a critical endeavor that can further maximize return on investment. We used Zonation, a conservation planning tool and geographical distributions of amphibians, birds, mammals, and reptiles to suggest and compare priority areas for conservation and research of terrestrial vertebrates worldwide. We also evaluated the degree of human disturbance in both types of priority areas by describing the value of the human footprint index within such areas. The spatial concordance between priority conservation and research areas was low: 0.36% of the world's land area. In these areas, we found it would be possible to protect almost half of the currently threatened species and to gather information on nearly 42% of data-deficient (DD) species. We also found that 6199 protected areas worldwide are located in such places, although only 35% of them have strict conservation purposes. Areas of consensus between conservation and research areas represent an opportunity for simultaneously conserving and acquiring knowledge of threatened and DD species of vertebrates. Although the picture is not the most encouraging, joint conservation and research efforts are possible and should be fostered to save vertebrate species from our own ignorance and extinction.  相似文献   
125.
Fungi are undoubtedly important for ecosystem functioning; however, they have been omitted or given scant attention in most biodiversity policy documents, management plans, and formal conservation schedules throughout the world. This oversight may be due to a general lack of awareness in the scientific community and compounded by a scarcity of mycology‐associated curricula at the tertiary level and a lack of mycologists in research institutions. Although molecular techniques advance the systematic cataloging of fungi and facilitate insights into fungal communities, the scarcity of professional mycologists in the environmental sciences hampers conservation efforts. Conversely, citizen science initiatives are making significant contributions to the mycology discipline by increasing awareness and extending the scope of fungal surveys. Future research by professional and amateur mycologists into the distribution of fungi and their function in ecosystems will help identify wider and more effective conservation goals.  相似文献   
126.
The Global Strategy for Plant Conservation (GSPC) set an ambitious target to achieve a conservation assessment for all known plant species by 2020. We consolidated digitally available plant conservation assessments and reconciled their scientific names and assessment status to predefined standards to provide a quantitative measure of progress toward this target. The 241,919 plant conservation assessments generated represent 111,824 accepted land plant species (vascular plants and bryophytes, not algae). At least 73,081 and up to 90,321 species have been assessed at the global scale, representing 21–26% of known plant species. Of these plant species, at least 27,148 and up to 32,542 are threatened. Eighty plant families, including some of the largest, such as Asteraceae, Orchidaceae, and Rubiaceae, are underassessed and should be the focus of assessment effort if the GSPC target is to be met by 2020. Our data set is accessible online (ThreatSearch) and is a baseline that can be used to directly support other GSPC targets and plant conservation action. Although around one‐quarter of a million plant assessments have been compiled, the majority of plants are still unassessed. The challenge now is to build on this progress and redouble efforts to document conservation status of unassessed plants to better inform conservation decisions and conserve the most threatened species.  相似文献   
127.
128.
Wildlife conservation and management (WCM) practices have been historically drawn from a wide variety of academic fields, yet practitioners have been slow to engage with emerging conversations about animals as complex beings, whose individuality and sociality influence their relationships with humans. We propose an explicit acknowledgement of wild, nonhuman animals as active participants in WCM. We examined 190 studies of WCM interventions and outcomes to highlight 3 common assumptions that underpin many present approaches to WCM: animal behaviors are rigid and homogeneous; wildlife exhibit idealized wild behavior and prefer pristine habitats; and human–wildlife relationships are of marginal or secondary importance relative to nonhuman interactions. We found that these management interventions insufficiently considered animal learning, decision-making, individuality, sociality, and relationships with humans and led to unanticipated detrimental outcomes. To address these shortcomings, we synthesized theoretical advances in animal behavioral sciences, animal geographies, and animal legal theory that may help conservation professionals reconceptualize animals and their relationships with humans. Based on advances in these fields, we constructed the concept of animal agency, which we define as the ability of animals to actively influence conservation and management outcomes through their adaptive, context-specific, and complex behaviors that are predicated on their sentience, individuality, lived experiences, cognition, sociality, and cultures in ways that shape and reshape shared human–wildlife cultures, spaces, and histories. Conservation practices, such as compassionate conservation, convivial conservation, and ecological justice, incorporate facets of animal agency. Animal agency can be incorporated in conservation problem-solving by assessing the ways in which agency contributes to species’ survival and by encouraging more adaptive and collaborative decision-making among human and nonhuman stakeholders.  相似文献   
129.
Amphibians are severely affected by climate change, particularly in regions where droughts prevail and water availability is scarce. The extirpation of amphibians triggers cascading effects that disrupt the trophic structure of food webs and ecosystems. Dedicated assessments of the spatial adaptive potential of amphibian species under climate change are, therefore, essential to provide guidelines for their effective conservation. I used predictions about the location of suitable climates for 27 amphibian species in the Iberian Peninsula from a baseline period to 2080 to typify shifting species’ ranges. The time at which these range types are expected to be functionally important for the adaptation of a species was used to identify full or partial refugia; areas most likely to be the home of populations moving into new climatically suitable grounds; areas most likely to receive populations after climate adaptive dispersal; and climatically unsuitable areas near suitable areas. I implemented an area prioritization protocol for each species to obtain a cohesive set of areas that would provide maximum adaptability and where management interventions should be prioritized. A connectivity assessment pinpointed where facilitative strategies would be most effective. Each of the 27 species had distinct spatial requirements but, common to all species, a bottleneck effect was predicted by 2050 because source areas for subsequent dispersal were small in extent. Three species emerged as difficult to maintain up to 2080. The Iberian northwest was predicted to capture adaptive range for most species. My study offers analytical guidelines for managers and decision makers to undertake systematic assessments on where and when to intervene to maximize the persistence of amphibian species and the functionality of the ecosystems that depend on them.  相似文献   
130.
Although illegal wildlife trade (IWT) represents a serious threat to biodiversity, research into the prevalence of illegal plant collection and trade remains scarce. Because cacti and succulents are heavily threatened by overcollection for often illegal, international ornamental trade, we surveyed 441 members of the cacti and succulent hobbyist collector community with a mixed quantitative and qualitative approach. We sought to understand collector perspectives on the Convention on the International Trade in Endangered Species of Wild Flora and Fauna (CITES) and on the threats IWT poses to cactus and succulent conservation. Most respondents (74% of 401 respondents) stated that illegal collection in cacti and succulents represents a “very serious problem” and that the problem of wild plant collection is increasing (72% of 319 respondents). Most forms of illegal collection and trade were seen as very unacceptable by respondents. Self-reported noncompliance with CITES rules was uncommon (11.2% of 418 respondents); it remains a persistent problem in parts of the cacti and succulent hobbyist community. People engaging in rule breaking, such as transporting plants without required CITES documents, generally did so knowingly. Although 60.6% of 381 respondents regarded CITES as a very important tool for conservation, sentiment toward CITES and its efficacy in helping species conservation was mixed. Collectors in our survey saw themselves as potentially playing important roles in cactus and succulent conservation, but this potential resource remains largely untapped. Our results suggest the need for enhanced consultation with stakeholders in CITES decision-making. For challenging subjects like IWT, developing evidence-based responses demands deep interdisciplinary engagement, including assessing the conservation impact of species listings on CITES appendices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号