首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   544篇
  免费   207篇
  国内免费   1篇
废物处理   1篇
环保管理   3篇
综合类   4篇
基础理论   736篇
污染及防治   4篇
评价与监测   2篇
社会与环境   2篇
  2023年   59篇
  2022年   52篇
  2021年   64篇
  2020年   65篇
  2019年   47篇
  2018年   36篇
  2017年   56篇
  2016年   46篇
  2015年   69篇
  2014年   44篇
  2013年   49篇
  2012年   29篇
  2011年   39篇
  2010年   47篇
  2009年   11篇
  2008年   27篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1991年   1篇
  1985年   1篇
  1975年   1篇
排序方式: 共有752条查询结果,搜索用时 421 毫秒
131.
Habitat connectivity is a key objective of current conservation policies and is commonly modeled by landscape graphs (i.e., sets of habitat patches [nodes] connected by potential dispersal paths [links]). These graphs are often built based on expert opinion or species distribution models (SDMs) and therefore lack empirical validation from data more closely reflecting functional connectivity. Accordingly, we tested whether landscape graphs reflect how habitat connectivity influences gene flow, which is one of the main ecoevolutionary processes. To that purpose, we modeled the habitat network of a forest bird (plumbeous warbler [Setophaga plumbea]) on Guadeloupe with graphs based on expert opinion, Jacobs’ specialization indices, and an SDM. We used genetic data (712 birds from 27 populations) to compute local genetic indices and pairwise genetic distances. Finally, we assessed the relationships between genetic distances or indices and cost distances or connectivity metrics with maximum-likelihood population-effects distance models and Spearman correlations between metrics. Overall, the landscape graphs reliably reflected the influence of connectivity on population genetic structure; validation R2 was up to 0.30 and correlation coefficients were up to 0.71. Yet, the relationship among graph ecological relevance, data requirements, and construction and analysis methods was not straightforward because the graph based on the most complex construction method (species distribution modeling) sometimes had less ecological relevance than the others. Cross-validation methods and sensitivity analyzes allowed us to make the advantages and limitations of each construction method spatially explicit. We confirmed the relevance of landscape graphs for conservation modeling but recommend a case-specific consideration of the cost-effectiveness of their construction methods. We hope the replication of independent validation approaches across species and landscapes will strengthen the ecological relevance of connectivity models.  相似文献   
132.
Species shift their distribution in response to climate and land-cover change, which may result in a spatial mismatch between currently protected areas (PAs) and priority conservation areas (PCAs). We examined the effects of climate and land-cover change on potential range of gibbons and sought to identify PCAs that would conserve them effectively. We collected global gibbon occurrence points and modeled (ecological niche model) their current and potential 2050s ranges under climate-change and different land-cover-change scenarios. We examined change in range and PA coverage between the current and future ranges of each gibbon species. We applied spatial conservation prioritization to identify the top 30% PCAs for each species. We then determined how much of the PCAs are conserved in each country within the global range of gibbons. On average, 31% (SD 22) of each species’ current range was covered in PAs. PA coverage of the current range of 9 species was <30%. Nine species lost on average 46% (SD 29) of their potential range due to climate change. Under climate-change with an optimistic land-cover-change scenario (B1), 12 species lost 39% (SD 28) of their range. In a pessimistic land-cover-change scenario (A2), 15 species lost 36% (SD 28) of their range. Five species lost significantly more range under the A2 scenario than the B1 scenario (p = 0.01, SD 0.01), suggesting that gibbons will benefit from effective management of land cover. PA coverage of future range was <30% for 11 species. On average, 32% (SD 25) of PCAs were covered by PAs. Indonesia contained more species and PCAs and thus has the greatest responsibility for gibbon conservation. Indonesia, India, and Myanmar need to expand their PAs to fulfill their responsibility to gibbon conservation. Our results provide a baseline for global gibbon conservation, particularly for countries lacking gibbon research capacity.  相似文献   
133.
Measuring progress toward international biodiversity targets requires robust information on the conservation status of species, which the International Union for Conservation of Nature (IUCN) Red List of Threatened Species provides. However, data and capacity are lacking for most hyperdiverse groups, such as invertebrates, plants, and fungi, particularly in megadiverse or high-endemism regions. Conservation policies and biodiversity strategies aimed at halting biodiversity loss by 2020 need to be adapted to tackle these information shortfalls after 2020. We devised an 8-point strategy to close existing data gaps by reviving explorative field research on the distribution, abundance, and ecology of species; linking taxonomic research more closely with conservation; improving global biodiversity databases by making the submission of spatially explicit data mandatory for scientific publications; developing a global spatial database on threats to biodiversity to facilitate IUCN Red List assessments; automating preassessments by integrating distribution data and spatial threat data; building capacity in taxonomy, ecology, and biodiversity monitoring in countries with high species richness or endemism; creating species monitoring programs for lesser-known taxa; and developing sufficient funding mechanisms to reduce reliance on voluntary efforts. Implementing these strategies in the post-2020 biodiversity framework will help to overcome the lack of capacity and data regarding the conservation status of biodiversity. This will require a collaborative effort among scientists, policy makers, and conservation practitioners.  相似文献   
134.
The establishment of marine protected areas (MPAs) is a critical step in ensuring the continued persistence of marine biodiversity. Although the area protected in MPAs is growing, the movement of individuals (or larvae) among MPAs, termed connectivity, has only recently been included as an objective of many MPAs. As such, assessing connectivity is often neglected or oversimplified in the planning process. For promoting population persistence, it is important to ensure that protected areas in a system are functionally connected through dispersal or adult movement. We devised a multi-species model of larval dispersal for the Australian marine environment to evaluate how much local scale connectivity is protected in MPAs and determine whether the extensive system of MPAs truly functions as a network. We focused on non-migratory species with simplified larval behaviors (i.e., passive larval dispersal) (e.g., no explicit vertical migration) as an illustration. Of all the MPAs analyzed (approximately 2.7 million km2), outside the Great Barrier Reef and Ningaloo Reef, <50% of MPAs (46-80% of total MPA area depending on the species considered) were functionally connected. Our results suggest that Australia's MPA system cannot be referred to as a single network, but rather a collection of numerous smaller networks delineated by natural breaks in the connectivity of reef habitat. Depending on the dispersal capacity of the taxa of interest, there may be between 25 and 47 individual ecological networks distributed across the Australian marine environment. The need to first assess the underlying natural connectivity of a study system prior to implementing new MPAs represents a key research priority for strategically enlarging MPA networks. Our findings highlight the benefits of integrating multi-species connectivity into conservation planning to identify opportunities to better incorporate connectivity into the design of MPA systems and thus to increase their capacity to support long-term, sustainable biodiversity outcomes.  相似文献   
135.
Estimates of biodiversity change are essential for the management and conservation of ecosystems. Accurate estimates rely on selecting representative sites, but monitoring often focuses on sites of special interest. How such site-selection biases influence estimates of biodiversity change is largely unknown. Site-selection bias potentially occurs across four major sources of biodiversity data, decreasing in likelihood from citizen science, museums, national park monitoring, and academic research. We defined site-selection bias as a preference for sites that are either densely populated (i.e., abundance bias) or species rich (i.e., richness bias). We simulated biodiversity change in a virtual landscape and tracked the observed biodiversity at a sampled site. The site was selected either randomly or with a site-selection bias. We used a simple spatially resolved, individual-based model to predict the movement or dispersal of individuals in and out of the chosen sampling site. Site-selection bias exaggerated estimates of biodiversity loss in sites selected with a bias by on average 300–400% compared with randomly selected sites. Based on our simulations, site-selection bias resulted in positive trends being estimated as negative trends: richness increase was estimated as 0.1 in randomly selected sites, whereas sites selected with a bias showed a richness change of −0.1 to −0.2 on average. Thus, site-selection bias may falsely indicate decreases in biodiversity. We varied sampling design and characteristics of the species and found that site-selection biases were strongest in short time series, for small grains, organisms with low dispersal ability, large regional species pools, and strong spatial aggregation. Based on these findings, to minimize site-selection bias, we recommend use of systematic site-selection schemes; maximizing sampling area; calculating biodiversity measures cumulatively across plots; and use of biodiversity measures that are less sensitive to rare species, such as the effective number of species. Awareness of the potential impact of site-selection bias is needed for biodiversity monitoring, the design of new studies on biodiversity change, and the interpretation of existing data.  相似文献   
136.
The threat posed by large carnivores to livestock and humans makes peaceful coexistence between them difficult. Effective implementation of conservation laws and policies depends on the attitudes of local residents toward the target species. There are many known correlates of human attitudes toward carnivores, but they have only been assessed at the scale of the individual. Because human societies are organized hierarchically, attitudes are presumably influenced by different factors at different scales of social organization, but this scale dependence has not been examined. We used structured interview surveys to quantitatively assess the attitudes of a Buddhist pastoral community toward snow leopards (Panthera uncia) and wolves (Canis lupus). We interviewed 381 individuals from 24 villages within 6 study sites across the high‐elevation Spiti Valley in the Indian Trans‐Himalaya. We gathered information on key explanatory variables that together captured variation in individual and village‐level socioeconomic factors. We used hierarchical linear models to examine how the effect of these factors on human attitudes changed with the scale of analysis from the individual to the community. Factors significant at the individual level were gender, education, and age of the respondent (for wolves and snow leopards), number of income sources in the family (wolves), agricultural production, and large‐bodied livestock holdings (snow leopards). At the community level, the significant factors included the number of smaller‐bodied herded livestock killed by wolves and mean agricultural production (wolves) and village size and large livestock holdings (snow leopards). Our results show that scaling up from the individual to higher levels of social organization can highlight important factors that influence attitudes of people toward wildlife and toward formal conservation efforts in general. Such scale‐specific information can help managers apply conservation measures at appropriate scales. Our results reiterate the need for conflict management programs to be multipronged. Factores Multi‐Escala que Afectan las Actitudes Humanas hacia Leopardos de las Nieves y Lobos  相似文献   
137.
Permeability of Roads to Movement of Scrubland Lizards and Small Mammals   总被引:2,自引:0,他引:2  
A primary objective of road ecology is to understand and predict how roads affect connectivity of wildlife populations. Road avoidance behavior can fragment populations, whereas lack of road avoidance can result in high mortality due to wildlife‐vehicle collisions. Many small animal species focus their activities to particular microhabitats within their larger habitat. We sought to assess how different types of roads affect the movement of small vertebrates and to explore whether responses to roads may be predictable on the basis of animal life history or microhabitat preferences preferences. We tracked the movements of fluorescently marked animals at 24 sites distributed among 3 road types: low‐use dirt, low‐use secondary paved, and rural 2‐lane highway. Most data we collected were on the San Diego pocket mouse (Chaetodipus fallax), cactus mouse (Peromyscus eremicus), western fence lizard (Sceloporus occidentalis), orange‐throated whiptail (Aspidoscelis hyperythra), Dulzura kangaroo rat (Dipodomys simulans) (dirt, secondary paved), and deer mouse (Peromyscus maniculatus) (highway only). San Diego pocket mice and cactus mice moved onto dirt roads but not onto a low‐use paved road of similar width or onto the highway, indicating they avoid paved road substrate. Both lizard species moved onto the dirt and secondary paved roads but avoided the rural 2‐lane rural highway, indicating they may avoid noise, vibration, or visual disturbance from a steady flow of traffic. Kangaroo rats did not avoid the dirt or secondary paved roads. Overall, dirt and secondary roads were more permeable to species that prefer to forage or bask in open areas of their habitat, rather than under the cover of rocks or shrubs. However, all study species avoided the rural 2‐lane highway. Our results suggest that microhabitat use preferences and road substrate help predict species responses to low‐use roads, but roads with heavy traffic may deter movement of a much wider range of small animal species.  相似文献   
138.
SUMMARY

During eight years, the Biological Research Center of the Northwest promoted the federal decrees to attain legal protection of three key zones for biodiversity conservation in Mexico: La Sierra de La Laguna, El Desierto del Vizcaíno, and E1 Archipiélago Revillagigedo Biosphere Reserves. In this work, we discuss the biological and socioeconomical importance of these three regions, the necessary steps to attain a Presidential decree in Mexico, and the required strategies to promote local and political support for each decree. In a country like Mexico, the promotion of one Presidential decree to declare a zone as a biosphere reserve must successfully address two different goals: the technical and the political. The technical phase can be successfully completed by a research centre or university in 6 to 12 months; while the political phase may or may not be successfully completed. If successful, in our experience, it can be attained with 2 to 96 months of continuous efforts.  相似文献   
139.
Widespread alteration of natural hydrologic patterns by large dams combined with peak demands for power and water delivery during summer months have resulted in frequent aseasonal flow pulses in rivers of western North America. Native species in these ecosystems have evolved with predictable annual flood-drought cycles; thus, their likelihood of persistence may decrease in response to disruption of the seasonal synchrony between stable low-flow conditions and reproduction. We evaluated whether altered flow regimes affected 2 native frogs in California and Oregon (U.S.A.) at 4 spatial and temporal extents. We examined changes in species distribution over approximately 50 years, current population density in 11 regulated and 16 unregulated rivers, temporal trends in abundance among populations occupying rivers with different hydrologic histories, and within-year patterns of survival relative to seasonal hydrology. The foothill yellow-legged frog (Rana boylii), which breeds only in flowing water, is more likely to be absent downstream of large dams than in free-flowing rivers, and breeding populations are on average 5 times smaller in regulated rivers than in unregulated rivers. Time series data (range = 8 - 19 years) from 5 populations of yellow-legged frogs and 2 populations of California red-legged frogs (R. draytonii) across a gradient of natural to highly artificial timing and magnitude of flooding indicate that variability of flows in spring and summer is strongly correlated with high mortality of early life stages and subsequent decreases in densities of adult females. Flow management that better mimics natural flow timing is likely to promote persistence of these species and others with similar phenology.  相似文献   
140.
Policy advocacy is an issue regularly debated among conservation scientists. These debates have focused on intentional policy advocacy by scientists, but advocacy can also be unintentional. I define inadvertent policy advocacy as the act of unintentionally expressing personal policy preferences or ethical judgments in a way that is nearly indistinguishable from scientific judgments. A scientist may be well intentioned and intellectually honest but still inadvertently engage in policy advocacy. There are two ways to inadvertently engage in policy advocacy. First, a scientist expresses an opinion that she or he believes is a scientific judgment but it is actually an ethical judgment or personal policy preference. Second, a scientist expresses an opinion that he or she knows is an ethical judgment or personal policy preference but inadvertently fails to effectively communicate the nature of the opinion to policy makers or the public. I illustrate inadvertent advocacy with three examples: recovery criteria in recovery plans for species listed under the U.S. Endangered Species Act, a scientific peer review of a recovery plan for the Northern Spotted Owl (Strix occidentalis caurina), and the International Union for Conservation of Nature's definition of threatened. In each example, scientists expressed ethical judgments or policy preferences, but their value judgments were not identified as such, and, hence, their value judgments were opaque to policy makers and the public. Circumstances suggest their advocacy was inadvertent. I believe conservation scientists must become acutely aware of the line between science and policy and avoid inadvertent policy advocacy because it is professional negligence, erodes trust in scientists and science, and perpetuates an ethical vacuum that undermines the rational political discourse necessary for the evolution of society's values. The principal remedy for inadvertent advocacy is education of conservation scientists in an effort to help them understand how science and values interact to fulfill the mission of conservation science.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号