首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   20篇
  国内免费   1篇
综合类   1篇
基础理论   79篇
  2023年   4篇
  2022年   3篇
  2021年   6篇
  2020年   6篇
  2019年   5篇
  2018年   4篇
  2017年   2篇
  2016年   6篇
  2015年   8篇
  2014年   7篇
  2013年   12篇
  2012年   2篇
  2011年   6篇
  2010年   5篇
  2008年   2篇
  2003年   1篇
  2001年   1篇
排序方式: 共有80条查询结果,搜索用时 78 毫秒
41.
Translocation, introduction, reintroduction, and assisted migrations are species conservation strategies that are attracting increasing attention, especially in the face of climate change. However, preventing the extinction of the suite of dependent species whose host species are threatened is seldom considered, and the effects on dependent species of moving threatened hosts are unclear. There is no published guidance on how to decide whether to move species, given this uncertainty. We examined the dependent-host system of 4 disparate taxonomic groups: insects on the feather-leaf banksia (Banksia brownii), montane banksia (B. montana), and Stirling Range beard heath (Leucopogon gnaphalioides); parasites of wild cats; mites and ticks on Duvaucel's gecko (Hoplodactylus duvaucelii) and tuatara (Sphenodon punctatus); and internal coccidian parasites of Cirl Bunting (Emberiza cirlus) and Hihi (Notiomystis cincta). We used these case studies to demonstrate a simple process for use in species- and community-level assessments of efforts to conserve dependents with their hosts. The insects dependent on Stirling Range beard heath and parasites on tigers (Panthera tigris) appeared to represent assemblages that would not be conserved by ex situ host conservation. In contrast, for the cases of dependent species we examined involving a single dependent species (internal parasites of birds and the mite Geckobia naultina on Duvaucel's gecko), ex situ conservation of the host species would also conserve the dependent species. However, moving dependent species with their hosts may be insufficient to maintain viable populations of the dependent species, and additional conservation strategies such as supplementing populations may be needed.  相似文献   
42.
Social media data are being increasingly used in conservation science to study human–nature interactions. User-generated content, such as images, video, text, and audio, and the associated metadata can be used to assess such interactions. A number of social media platforms provide free access to user-generated social media content. However, similar to any research involving people, scientific investigations based on social media data require compliance with highest standards of data privacy and data protection, even when data are publicly available. Should social media data be misused, the risks to individual users' privacy and well-being can be substantial. We investigated the legal basis for using social media data while ensuring data subjects’ rights through a case study based on the European Union's General Data Protection Regulation. The risks associated with using social media data in research include accidental and purposeful misidentification that has the potential to cause psychological or physical harm to an identified person. To collect, store, protect, share, and manage social media data in a way that prevents potential risks to users involved, one should minimize data, anonymize data, and follow strict data management procedure. Risk-based approaches, such as a data privacy impact assessment, can be used to identify and minimize privacy risks to social media users, to demonstrate accountability and to comply with data protection legislation. We recommend that conservation scientists carefully consider our recommendations in devising their research objectives so as to facilitate responsible use of social media data in conservation science research, for example, in conservation culturomics and investigations of illegal wildlife trade online.  相似文献   
43.
The IUCN (International Union for Conservation of Nature) Red List categories and criteria are the most widely used framework for assessing the relative extinction risk of species. The criteria are based on quantitative thresholds relating to the size, trends, and structure of species’ distributions and populations. However, data on these parameters are sparse and uncertain for many species and unavailable for others, potentially leading to their misclassification or classification as data deficient. We devised an approach that combines data on land-cover change, species-specific habitat preferences, population abundance, and dispersal distance to estimate key parameters (extent of occurrence, maximum area of occupancy, population size and trend, and degree of fragmentation) and hence predict IUCN Red List categories for species. We applied our approach to nonpelagic birds and terrestrial mammals globally (∼15,000 species). The predicted categories were fairly consistent with published IUCN Red List assessments, but more optimistic overall. We predicted 4.2% of species (467 birds and 143 mammals) to be more threatened than currently assessed and 20.2% of data deficient species (10 birds and 114 mammals) to be at risk of extinction. Incorporating the habitat fragmentation subcriterion reduced these predictions 1.5–2.3% and 6.4–14.9% (depending on the quantitative definition of fragmentation) for threatened and data deficient species, respectively, highlighting the need for improved guidance for IUCN Red List assessors on the application of this aspect of the IUCN Red List criteria. Our approach complements traditional methods of estimating parameters for IUCN Red List assessments. Furthermore, it readily provides an early-warning system to identify species potentially warranting changes in their extinction-risk category based on periodic updates of land-cover information. Given our method relies on optimistic assumptions about species distribution and abundance, all species predicted to be more at risk than currently evaluated should be prioritized for reassessment.  相似文献   
44.
Estimates of species geographic ranges constitute critical input for biodiversity assessments, including those for the International Union for the Conservation of Nature (IUCN) Red List of Threatened Species. Area of occupancy (AOO) is one metric that IUCN uses to quantify a species’ range, but data limitations typically lead to either under- or overestimates (and unnecessarily wide bounds of uncertainty). Fortunately, existing methods in which range maps and land-cover data are used to estimate the area currently holding habitat for a species can be extended to yield an unbiased range of plausible estimates for AOO. Doing so requires estimating the proportion of sites (currently containing habitat) that a species occupies within its range (i.e., prevalence). Multiplying a quantification of habitat area by prevalence yields an estimate of what the species inhabits (i.e., AOO). For species with intense sampling at many sites, presence–absence data sets or occupancy modeling allow calculation of prevalence. For other species, primary biodiversity data (records of a species’ presence at a point in space and time) from citizen-science initiatives and research collections of natural history museums and herbaria could be used. In such cases, estimates of sample prevalence should be corrected by dividing by the species’ detectability. To estimate detectability from these data sources, extensions of inventory-completeness analyses merit development. With investments to increase the quality and availability of online biodiversity data, consideration of prevalence should lead to tighter and more realistic bounds of AOO for many taxonomic groups and geographic regions. By leading to more realistic and representative characterizations of biodiversity, integrating maps of current habitat with estimates of prevalence should empower conservation practitioners and decision makers and thus guide actions and policy worldwide.  相似文献   
45.
Abstract: The International Union for Conservation of Nature (IUCN) Red List of Threatened Species was increasingly used during the 1980s to assess the conservation status of species for policy and planning purposes. This use stimulated the development of a new set of quantitative criteria for listing species in the categories of threat: critically endangered, endangered, and vulnerable. These criteria, which were intended to be applicable to all species except microorganisms, were part of a broader system for classifying threatened species and were fully implemented by IUCN in 2000. The system and the criteria have been widely used by conservation practitioners and scientists and now underpin one indicator being used to assess the Convention on Biological Diversity 2010 biodiversity target. We describe the process and the technical background to the IUCN Red List system. The criteria refer to fundamental biological processes underlying population decline and extinction. But given major differences between species, the threatening processes affecting them, and the paucity of knowledge relating to most species, the IUCN system had to be both broad and flexible to be applicable to the majority of described species. The system was designed to measure the symptoms of extinction risk, and uses 5 independent criteria relating to aspects of population loss and decline of range size. A species is assigned to a threat category if it meets the quantitative threshold for at least one criterion. The criteria and the accompanying rules and guidelines used by IUCN are intended to increase the consistency, transparency, and validity of its categorization system, but it necessitates some compromises that affect the applicability of the system and the species lists that result. In particular, choices were made over the assessment of uncertainty, poorly known species, depleted species, population decline, restricted ranges, and rarity; all of these affect the way red lists should be viewed and used. Processes related to priority setting and the development of national red lists need to take account of some assumptions in the formulation of the criteria.  相似文献   
46.
The International Union for Conservation of Nature (IUCN) Red List Categories and Criteria is a quantitative framework for classifying species according to extinction risk. Population models may be used to estimate extinction risk or population declines. Uncertainty and variability arise in threat classifications through measurement and process error in empirical data and uncertainty in the models used to estimate extinction risk and population declines. Furthermore, species traits are known to affect extinction risk. We investigated the effects of measurement and process error, model type, population growth rate, and age at first reproduction on the reliability of risk classifications based on projected population declines on IUCN Red List classifications. We used an age‐structured population model to simulate true population trajectories with different growth rates, reproductive ages and levels of variation, and subjected them to measurement error. We evaluated the ability of scalar and matrix models parameterized with these simulated time series to accurately capture the IUCN Red List classification generated with true population declines. Under all levels of measurement error tested and low process error, classifications were reasonably accurate; scalar and matrix models yielded roughly the same rate of misclassifications, but the distribution of errors differed; matrix models led to greater overestimation of extinction risk than underestimations; process error tended to contribute to misclassifications to a greater extent than measurement error; and more misclassifications occurred for fast, rather than slow, life histories. These results indicate that classifications of highly threatened taxa (i.e., taxa with low growth rates) under criterion A are more likely to be reliable than for less threatened taxa when assessed with population models. Greater scrutiny needs to be placed on data used to parameterize population models for species with high growth rates, particularly when available evidence indicates a potential transition to higher risk categories.  相似文献   
47.
Birds have been comprehensively assessed on the International Union for Conservation of Nature (IUCN) Red List more times than any other taxonomic group. However, to date, generation lengths have not been systematically estimated to scale population trends when undertaking assessments, as required by the criteria of the IUCN Red List. We compiled information from major databases of published life-history and trait data for all birds and imputed missing life-history data as a function of species traits with generalized linear mixed models. Generation lengths were derived for all species, based on our modeled values of age at first breeding, maximum longevity, and annual adult survival. The resulting generation lengths varied from 1.42 to 27.87 years (median 2.99). Most species (61%) had generation lengths <3.33 years, meaning that the period of 3 generations—over which population declines are assessed under criterion A—was <10 years, which is the value used for IUCN Red List assessments of species with short generation times. For these species, our trait-informed estimates of generation length suggested that 10 years is a robust precautionary value for threat assessment. In other cases, however, for whole families, genera, or individual species, generation length had a substantial impact on their estimated extinction risk, resulting in higher extinction risk in long-lived species than in short-lived species. Although our approach effectively addressed data gaps, generation lengths for some species may have been underestimated due to a paucity of life-history data. Overall, our results will strengthen future extinction-risk assessments and augment key databases of avian life-history and trait data.  相似文献   
48.
Standardized classification methods based on quantifiable risk metrics are critical for evaluating extinction threats because they increase objectivity, consistency, and transparency of listing decisions. Yet, in the United States, neither federal nor state agencies use standardized methods for listing species for legal protection, which could put listing decisions at odds with the magnitude of the risk. We used a recently developed set of quantitative risk metrics for California herpetofauna as a case study to highlight discrepancies in listing decisions made without standardized methods. We also combined such quantitative metrics with classification tree analysis to attempt to increase the transparency of previous listing decisions by identifying the criteria that had inherently been given the most weight. Federally listed herpetofauna in California scored significantly higher on the risk-metric spectrum than those not federally listed, whereas state-listed species did not score any higher than species that were not state listed. Based on classification trees, state endemism was the most important predictor of listing status at the state level and distribution trend (decline in a species’ range size) and population trend (decline in a species’ abundance at localized sites) were the most important predictors at the federal level. Our results emphasize the need for governing bodies to adopt standardized methods for assessing conservation risk that are based on quantitative criteria. Such methods allow decision makers to identify criteria inherently given the most weight in determining listing status, thus increasing the transparency of previous listing decisions, and produce an unbiased comparison of conservation threat across all species to promote consistency, efficiency, and effectiveness of the listing process.  相似文献   
49.
Biodiversity indices often combine data from different species when used in monitoring programs. Heuristic properties can suggest preferred indices, but we lack objective ways to discriminate between indices with similar heuristics. Biodiversity indices can be evaluated by determining how well they reflect management objectives that a monitoring program aims to support. For example, the Convention on Biological Diversity requires reporting about extinction rates, so simple indices that reflect extinction risk would be valuable. We developed 3 biodiversity indices that are based on simple models of population viability that relate extinction risk to abundance. We based the first index on the geometric mean abundance of species and the second on a more general power mean. In a third index, we integrated the geometric mean abundance and trend. These indices require the same data as previous indices, but they also relate directly to extinction risk. Field data for butterflies and woodland plants and experimental studies of protozoan communities show that the indices correlate with local extinction rates. Applying the index based on the geometric mean to global data on changes in avian abundance suggested that the average extinction probability of birds has increased approximately 1% from 1970 to 2009. Conectando Índices para el Monitoreo de la Biodiversidad con la Teoría de Riesgo de Extinción  相似文献   
50.
Culturomics is emerging as an important field within science, as a way to measure attitudes and beliefs and their dynamics across time and space via quantitative analysis of digitized data from literature, news, film, social media, and more. Sentiment analysis is a culturomics tool that, within the last decade, has provided a means to quantify the polarity of attitudes expressed within various media. Conservation science is a crisis discipline; therefore, accurate and effective communication are paramount. We investigated how conservation scientists communicate their findings through scientific journal articles. We analyzed 15,001 abstracts from articles published from 1998 to 2017 in 6 conservation-focused journals selected based on indexing in scientific databases. Articles were categorized by year, focal taxa, and the conservation status of the focal species. We calculated mean sentiment score for each abstract (mean adjusted z score) based on 4 lexicons (Jockers-Rinker, National Research Council, Bing, and AFINN). We found a significant positive annual trend in the sentiment scores of articles. We also observed a significant trend toward increasing negativity along the spectrum of conservation status categories (i.e., from least concern to extinct). There were some clear differences in the sentiments with which research on different taxa was reported, however. For example, abstracts mentioning lobe finned fishes tended to have high sentiment scores, which could be related to the rediscovery of the coelacanth driving a positive narrative. Contrastingly, abstracts mentioning elasmobranchs had low scores, possibly reflecting the negative sentiment score associated with the word shark. Sentiment analysis has applications in science, especially as it pertains to conservation psychology, and we suggest a new science-based lexicon be developed specifically for the field of conservation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号