首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1057篇
  免费   349篇
  国内免费   31篇
安全科学   15篇
废物处理   7篇
环保管理   467篇
综合类   591篇
基础理论   135篇
污染及防治   120篇
评价与监测   33篇
社会与环境   53篇
灾害及防治   16篇
  2024年   16篇
  2023年   20篇
  2022年   35篇
  2021年   40篇
  2020年   37篇
  2019年   41篇
  2018年   42篇
  2017年   42篇
  2016年   39篇
  2015年   70篇
  2014年   58篇
  2013年   70篇
  2012年   93篇
  2011年   63篇
  2010年   59篇
  2009年   53篇
  2008年   63篇
  2007年   62篇
  2006年   74篇
  2005年   43篇
  2004年   32篇
  2003年   34篇
  2002年   32篇
  2001年   31篇
  2000年   16篇
  1999年   19篇
  1998年   17篇
  1997年   13篇
  1996年   7篇
  1995年   9篇
  1994年   13篇
  1993年   12篇
  1992年   6篇
  1991年   12篇
  1990年   11篇
  1989年   12篇
  1988年   11篇
  1987年   10篇
  1986年   9篇
  1985年   6篇
  1984年   5篇
  1983年   7篇
  1982年   17篇
  1981年   13篇
  1980年   11篇
  1979年   13篇
  1978年   5篇
  1977年   5篇
  1975年   6篇
  1972年   5篇
排序方式: 共有1437条查询结果,搜索用时 15 毫秒
191.
ABSTRACT: Urbanization of a drainage basin results in pervasive hydrologic changes that in turn initiate long-term changes in stream channels. Increases in peak discharges and in durations of high flows result in either quasi-equilibrium channel expansion, where cross-section area increases in near-proportion to the discharge increase, or catastrophic channel incision, where changes occur far out of proportion to the discharge increases that initiated them. Field data and hydrologic modeling of rapidly urbanizing basins in King County, Washington, define conditions of flow, topography, geology, and channel roughness that identify streams susceptible to incision. Channel slope and geologic material are particularly critical; thus simple map overlays, nearly irrespective of contributing drainage area, provide a valuable planning tool for identification of susceptible terrain. Where such conditions exist, basal shear stress provides a quantifiable parameter for predicting likely problems, although knickpoints are typical in such settings and confound simple calculation of sediment-transport rates. Where urbanization proceeds in such areas, effective mitigation of the incision hazards requires a degree of stormwater control far in excess of standards typically applied to present development activity.  相似文献   
192.
ABSTRACT: Detailed studies of the surface hydrology of reclaimed surface-mined watersheds for both rainfall and snowmelt events are non-existent for central Alberta yet this information is crucial for design of runoff conveyance and storage structures. A study was initiated in 1992 with principal objectives of quantifying surface runoff for both summer rainfall and spring snowmelt events and identifying the dominant flow processes occurring in two reclaimed watersheds. Snowmelt accounted for 86 and 100% of annual watershed runoff in 1993 and 1994, respectively. The highest instantaneous peak flow was recorded during a summer rainfall event with a return period of greater than 50 years. Infiltration-excess overland flow was identified as the dominant flow process occurring within the Sandy Subsoil Watershed, whereas saturation overland flow was the principal runoff process occurring within the West Watershed.  相似文献   
193.
ABSTRACT: This paper first discusses the results of sensitivity analyses conducted on various parameters of the San Francisco Stormwater Model ta version of WREM) and the Penn State Runoff Model in terms of their impact on outflow hydrographs. The parameters considered within a idealized catchment include: basin shape, imperivous fraction, overland roughness and slope: deterntion depth; infiltration capacity; and hyetograph timing. Second, the results for the hypothetical catchment are extended to the lazzard laboratory surfaces (asphalt, grass, roofing material) as a mean of illustrating the need for changes in model structure, as opposed to continued parameter adjustment Finally the effect of altering the scale of hydraulic representation in the surface runoff and sewer transport calculations are demonstrated for two gaged watersheds in Hamburg, West Germany.  相似文献   
194.
    
Variability and trends in water‐year runoff efficiency (RE) — computed as the ratio of water‐year runoff (streamflow per unit area) to water‐year precipitation — in the conterminous United States (CONUS) are examined for the 1951 through 2012 period. Changes in RE are analyzed using runoff and precipitation data aggregated to United States Geological Survey 8‐digit hydrologic cataloging units (HUs). Results indicate increases in RE for some regions in the north‐central CONUS and large decreases in RE for the south‐central CONUS. The increases in RE in the north‐central CONUS are explained by trends in climate, whereas the large decreases in RE in the south‐central CONUS likely are related to groundwater withdrawals from the Ogallala aquifer to support irrigated agriculture.  相似文献   
195.
    
ABSTRACT: This paper evaluates the effects of watershed geometric representation (i.e., plane and channel representation) on runoff and sediment yield simulations in a semiarid rangeland watershed. A process based, spatially distributed runoff erosion model (KINEROS2) was used to explore four spatial representations of a 4.4 ha experimental watershed. The most complex representation included all 96 channel elements identifiable in the field. The least complex representation contained only five channel elements. It was concluded that oversimplified watershed representations greatly influence runoff and sediment yield simulations by inducing excessive infiltration on hillslopes and distorting runoff patterns and sediment fluxes. Runoff and sediment yield decrease systematically with decreasing complexity in watershed representation. However, less complex representations had less impact on runoff and sediment‐yield simulations for small rainfall events. This study concludes that the selection of the appropriate level of watershed representation can have important theoretical and practical implications on runoff and sediment yield modeling in semiarid environments.  相似文献   
196.
    
High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976‐2012 compared to 1939‐1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (<5%) in annual or growing season precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (< 0.10) 27% decrease in the annual runoff response to precipitation (runoff ratio). Surface‐water withdrawals for various uses appear to account for <12% of the reduction in average annual flow volume, and we found no published or reported evidence of substantial flow reduction caused by groundwater pumping in this basin. Results of our analysis suggest that increases in monthly average maximum and minimum temperatures, including >1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.  相似文献   
197.
    
ABSTRACT: Flood frequency analyses are frequently being made using widely available computer programs. Serious errors can result from blind acceptance of such results. Visual interpretation of observed flood series can be used for evaluation on frequency paper with compatible scales. Such frequency papers are presented in the paper. In ephemeral streams, more infrequent floods may constitute a separate set from the more frequent floods because (a) runoff producing storms cover only a portion of the contributing area, (b) transmission losses in the normally dry streambed may reduce the peak flow, and (c) some runoff may be stored in stock water ponds which therefore leads to partial area runoff. The Cunnane plotting position used in this paper is superior to the more widely used Weibull equation, having a mathematically sound basis for locating observed floods on an assumed probability.  相似文献   
198.
199.
ABSTRACT: Three urban runoff models, namely, the Road Research Laboratory Model (RRLM), the Storm Water Management Model (SWMM) and the University of Cincinnati Urban Runoff Model (UCURM), were examined by comparing the model simulated hydrographs with the hydrographs measured on several instrumented urban watersheds. This comparison was done for the hydrograph peak points as well as for the entire hydrographs using such statistical measures as the correlation coefficient, the special correlation coefficient and the integral square error. The results of the study indicated that, when applying the three selected non-calibrated models on small urban catchments, the SWM model performed marginally better than the RRL model and both these models were more accurate than the UCUR model. On larger watersheds, the comparisons between the SWM model and the other two models would be likely even more favourable for the SWM model, because it has the most advanced flow routing scheme among the studied models.  相似文献   
200.
    
The objective of this study was to assess curve number (CN) values derived for two forested headwater catchments in the Lower Coastal Plain (LCP) of South Carolina using a three‐year period of storm event rainfall and runoff data in comparison with results obtained from CN method calculations. Derived CNs from rainfall/runoff pairs ranged from 46 to 90 for the Upper Debidue Creek (UDC) watershed and from 42 to 89 for the Watershed 80 (WS80). However, runoff generation from storm events was strongly related to water table elevation, where seasonally variable evapotranspirative wet and dry moisture conditions persist. Seasonal water table fluctuation is independent of, but can be compounded by, wet conditions that occur as a result of prior storm events, further complicating flow prediction. Runoff predictions for LCP first‐order watersheds do not compare closely to measured flow under the average moisture condition normally associated with the CN method. In this study, however, results show improvement in flow predictions using CNs adjusted for antecedent runoff conditions and based on water table position. These results indicate that adaptations of CN model parameters are required for reliable flow predictions for these LCP catchments with shallow water tables. Low gradient topography and shallow water table characteristics of LCP watersheds allow for unique hydrologic conditions that must be assessed and managed differently than higher gradient watersheds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号