This paper describes four global-change phenomena that are having major impacts on Amazonian forests. The first is accelerating deforestation and logging. Despite recent government initiatives to slow forest loss, deforestation rates in Brazilian Amazonia have increased from 1.1 million ha yr–1 in the early 1990s, to nearly 1.5 million ha yr–1 from 1992–1994, and to more than 1.9 million ha yr–1 from 1995–1998. Deforestation is also occurring rapidly in some other parts of the Amazon Basin, such as in Bolivia and Ecuador, while industrialized logging is increasing dramatically in the Guianas and central Amazonia.The second phenomenon is that patterns of forest loss and fragmentation are rapidly changing. In recent decades, large-scale deforestation has mainly occurred in the southern and eastern portions of the Amazon — in the Brazilian states of Pará, Maranho, Rondônia, Acre, and Mato Grosso, and in northern Bolivia. While rates of forest loss remain very high in these areas, the development of major new highways is providing direct conduits into the heart of the Amazon. If future trends follow past patterns, land-hungry settlers and loggers may largely bisect the forests of the Amazon Basin.The third phenomenon is that climatic variability is interacting with human land uses, creating additional impacts on forest ecosystems. The 1997/98 El Niño drought, for example, led to a major increase in forest burning, with wildfires raging out of control in the northern Amazonian state of Roraima and other locations. Logging operations, which create labyrinths of roads and tracks in forsts, are increasing fuel loads, desiccation and ignition sources in forest interiors. Forest fragmentation also increases fire susceptibility by creating dry, fire-prone forest edges.Finally, recent evidence suggests that intact Amazonian forests are a globally significant carbon sink, quite possibly caused by higher forest growth rates in response to increasing atmospheric CO2 fertilization. Evidence for a carbon sink comes from long-term forest mensuration plots, from whole-forest studies of carbon flux and from investigations of atmospheric CO2 and oxygen isotopes. Unfortunately, intact Amazonian forests are rapidly diminishing. Hence, not only is the destruction of these forests a major source of greenhouse gases, but it is reducing their intrinsic capacity to help buffer the rapid anthropogenic rise in CO2. 相似文献
Risk evaluation of mixtures of asphalt and inorganic salts such as sodium nitrate, sodium nitrite, sodium carbonate and sodium dihydrogenphosphate was conducted. The ignition and the combustion characteristics of mixtures of asphalt and oxidizing salts were obtained. Quasi-heat-accumulation experiments of asphalt–salt mixtures were conducted using about 1 kg samples. Six types of asphalt–salt mixtures were made and their ignition characteristics were examined in the quasi-heat-accumulation experiments. Then to clarify burning behavior of the asphalt–salt mixtures, experiments for understanding their combustion characteristics were conducted using a cone calorimeter.
The main results are as follows.
(1) In the quasi-heat-accumulation experiment, a region with high concentration of the salt mixture particles was made at the bottom of the sample vessel through the process of their sedimentation. An exothermic reaction started in this region. Just before the asphalt–salt mixture was ignited, a huge amount of white smoke was released. A kind of jet flame of a few meters in height was created.
(2) Based on the data of ignition temperature from the cone calorimeter experiments, ignition of asphalt was caused by a chemical reaction of asphalt with an oxidizing salt. The combustion of the asphalt–salt mixture contained the self-heating reaction. 相似文献
Forecasting the temporal trend of a focal species, its range expansion or retraction, provides crucial information regarding population viability. To this end, we require the accumulation of temporal records which is evidently time consuming. Progress in spatial data capturing has enabled rapid and accurate assessment of species distribution across large scales. Therefore, it would be appealing to infer the temporal trends of populations from the spatial structure of their distributions. Based on a combination of models from the fields of range dynamics, occupancy scaling and spatial autocorrelation, here I present a model for forecasting the population trend solely from its spatial distribution. Numerical tests using cellular automata confirm a positive correlation, as inferred from the model, between the temporal change in species range sizes and the exponent of the power-law scaling pattern of occupancy. The model is thus recommended for rapid estimation of species range dynamics from a single snapshot of its current distribution. Further applications in biodiversity conservation could provide a swift risk assessment, especially, for endangered and invasive species. 相似文献
Although larval dispersal is crucial for the persistence of most marine populations, dispersal connectivity between sites is rarely considered in designing marine protected area networks. In particular the role of structural characteristics (known as topology) for the network of larval dispersal routes in the conservation of metapopulations has not been addressed. To determine reserve site configurations that provide highest persistence values with respect to their connectivity characteristics, we model nine connectivity topological models derived from graph theory in a demographic metapopulation model. We identify reserve site configurations that provide the highest persistence values for each of the metapopulation connectivity models. Except for the minimally connected and fully connected populations, we observed two general ‘rules of thumb’ for optimising the mean life time for all topological models: firstly place the majority of reserves, so that they are neighbours of each other, on the sites where the number of connections between the populations is highest (hub), secondly when the reserves have occupied the majority of the vertices in the hub, then select another area of high connectivity and repeat. If there are no suitable hubs remaining then distribute the remaining reserves to isolated locations optimising contact with non-reserved sites. 相似文献
The large investments needed if loss of biological diversity is to be stemmed will likely lead to increased public and political scrutiny of conservation strategies and the science underlying them. It is therefore crucial to understand the degree of consensus or divergence among scientists on core scientific perceptions and strategies most likely to achieve given objectives. I developed an internet survey designed to elucidate the opinions of conservation scientists. Conservation scientists (n =583) were unanimous (99.5%) in their view that a serious loss of biological diversity is likely, very likely, or virtually certain. Scientists' agreement that serious loss is very likely or virtually certain ranged from 72.8% for Western Europe to 90.9% for Southeast Asia. Tropical coral ecosystems were perceived as the most seriously affected by loss of biological diversity; 88.0% of respondents familiar with that ecosystem type agreed that a serious loss is very likely or virtually certain. With regard to conservation strategies, scientists most often viewed understanding how people and nature interact in certain contexts and the role of biological diversity in maintaining ecosystem function as their priorities. Protection of biological diversity for its cultural and spiritual values and because of its usefulness to humans were low priorities, which suggests that many scientists do not fully support the utilitarian concept of ecosystem services. Many scientists expressed a willingness to consider conservation triage, engage in active conservation interventions, and consider reframing conservation goals and measures of success for conservation of biological diversity in an era of climate change. Although some heterogeneity of opinion is evident, results of the survey show a clear consensus within the scientific community on core issues of the extent and geographic scope of loss of biological diversity and on elements that may contribute to successful conservation strategies in the future. 相似文献
Citizen-science programs are often touted as useful for advancing conservation literacy, scientific knowledge, and increasing scientific-reasoning skills among the public. Guidelines for collaboration among scientists and the public are lacking and the extent to which these citizen-science initiatives change behavior is relatively unstudied. Over two years, we studied 82 participants in a three-day program that included education about non-native invasive plants and collection of data on the occurrence of those plants. Volunteers were given background knowledge about invasive plant ecology and trained on a specific protocol for collecting invasive plant data. They then collected data and later gathered as a group to analyze data and discuss responsible environmental behavior with respect to invasive plants. We tested whether participants without experience in plant identification and with little knowledge of invasive plants increased their knowledge of invasive species ecology, participation increased knowledge of scientific methods, and participation affected behavior. Knowledge of invasive plants increased on average 24%, but participation was insufficient to increase understanding of how scientific research is conducted. Participants reported increased ability to recognize invasive plants and increased awareness of effects of invasive plants on the environment, but this translated into little change in behavior regarding invasive plants. Potential conflicts between scientific goals, educational goals, and the motivation of participants must be considered during program design. 相似文献