首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1181篇
  免费   437篇
  国内免费   5篇
安全科学   3篇
环保管理   4篇
综合类   29篇
基础理论   1555篇
污染及防治   15篇
评价与监测   4篇
社会与环境   11篇
灾害及防治   2篇
  2023年   90篇
  2022年   84篇
  2021年   114篇
  2020年   114篇
  2019年   105篇
  2018年   89篇
  2017年   117篇
  2016年   107篇
  2015年   129篇
  2014年   137篇
  2013年   119篇
  2012年   86篇
  2011年   95篇
  2010年   117篇
  2009年   25篇
  2008年   48篇
  2007年   3篇
  2006年   6篇
  2005年   4篇
  2004年   3篇
  2003年   5篇
  2002年   6篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1983年   1篇
  1982年   2篇
  1975年   1篇
排序方式: 共有1623条查询结果,搜索用时 250 毫秒
51.
Electrocution on overhead power structures negatively affects avian populations in diverse ecosystems worldwide, contributes to the endangerment of raptor populations in Europe and Africa, and is a major driver of legal action against electric utilities in North America. We investigated factors associated with avian electrocutions so poles that are likely to electrocute a bird can be identified and retrofitted prior to causing avian mortality. We used historical data from southern California to identify patterns of avian electrocution by voltage, month, and year to identify species most often killed by electrocution in our study area and to develop a predictive model that compared poles where an avian electrocution was known to have occurred (electrocution poles) with poles where no known electrocution occurred (comparison poles). We chose variables that could be quantified by personnel with little training in ornithology or electric systems. Electrocutions were more common at distribution voltages (≤33 kV) and during breeding seasons and were more commonly reported after a retrofitting program began. Red‐tailed Hawks (Buteo jamaicensis) (n = 265) and American Crows (Corvus brachyrhynchos) (n = 258) were the most commonly electrocuted species. In the predictive model, 4 of 14 candidate variables were required to distinguish electrocution poles from comparison poles: number of jumpers (short wires connecting energized equipment), number of primary conductors, presence of grounding, and presence of unforested unpaved areas as the dominant nearby land cover. When tested against a sample of poles not used to build the model, our model distributed poles relatively normally across electrocution‐risk values and identified the average risk as higher for electrocution poles relative to comparison poles. Our model can be used to reduce avian electrocutions through proactive identification and targeting of high‐risk poles for retrofitting. Modelo Predictivo del Riesgo de Electrocución de Aves en Líneas Eléctricas Elevadas  相似文献   
52.
Although wildlife conservation actions have increased globally in number and complexity, the lack of scalable, cost‐effective monitoring methods limits adaptive management and the evaluation of conservation efficacy. Automated sensors and computer‐aided analyses provide a scalable and increasingly cost‐effective tool for conservation monitoring. A key assumption of automated acoustic monitoring of birds is that measures of acoustic activity at colony sites are correlated with the relative abundance of nesting birds. We tested this assumption for nesting Forster's terns (Sterna forsteri) in San Francisco Bay for 2 breeding seasons. Sensors recorded ambient sound at 7 colonies that had 15–111 nests in 2009 and 2010. Colonies were spaced at least 250 m apart and ranged from 36 to 2,571 m2. We used spectrogram cross‐correlation to automate the detection of tern calls from recordings. We calculated mean seasonal call rate and compared it with mean active nest count at each colony. Acoustic activity explained 71% of the variation in nest abundance between breeding sites and 88% of the change in colony size between years. These results validate a primary assumption of acoustic indices; that is, for terns, acoustic activity is correlated to relative abundance, a fundamental step toward designing rigorous and scalable acoustic monitoring programs to measure the effectiveness of conservation actions for colonial birds and other acoustically active wildlife. La Actividad Vocal como un Índice Escalable y de Bajo Costo del Tamaño de Colonia de las Aves Marinas  相似文献   
53.
Despite several decades of research on the effects of fragmentation and habitat change on biodiversity, there remain strong biases in the geographical regions and taxonomic species studied. The knowledge gaps resulting from these biases are of particular concern if the forests most threatened with modification are also those for which the effects of such change are most poorly understood. To quantify the nature and magnitude of such biases, we conducted a systematic review of the published literature on forest fragmentation in the tropics for the period 1980–2012. Studies included focused on any type of response of single species, communities, or assemblages of any taxonomic group to tropical forest fragmentation and on fragmentation‐related changes to forests. Of the 853 studies we found in the SCOPUS database, 64% were conducted in the Neotropics, 13% in Asia, 10% in the Afrotropics, and 5% in Australasia. Thus, although the Afrotropics is subject to the highest rates of deforestation globally, it was the most disproportionately poorly studied biome. Significant taxonomic biases were identified. Of the taxonomic groups considered, herpetofauna was the least studied in the tropics, particularly in Africa. Research examining patterns of species distribution was by far the most common type (72%), and work focused on ecological processes (28%) was rare in all biomes, but particularly in the Afrotropics and for fauna. We suggest research efforts be directed toward less‐studied biogeographic regions, particularly where the threat of forest fragmentation continues to be high. Increased research investment in the Afrotropics will be important to build knowledge of threats and inform responses in a region where almost no efforts to restore its fragmented landscapes have yet begun and forest protection is arguably most tenuous. Sesgos Biogeográficos y Taxonómicos en la Investigación de la Fragmentación de Bosques Tropicales  相似文献   
54.
Local, regional, and global extinctions caused by habitat loss, degradation, and fragmentation have been widely reported for the tropics. The patterns and drivers of this loss of species are now increasingly well known in Amazonia, but there remains a significant gap in understanding of long‐term trends in species persistence and extinction in anthropogenic landscapes. Such a historical perspective is critical for understanding the status and trends of extant biodiversity as well as for identifying priorities to halt further losses. Using extensive historical data sets of specimen records and results of contemporary surveys, we searched for evidence of local extinctions of a terra firma rainforest avifauna over 200 years in a 2500 km2 eastern Amazonian region around the Brazilian city of Belém. This region has the longest history of ornithological fieldwork in the entire Amazon basin and lies in the highly threatened Belém Centre of Endemism. We also compared our historically inferred extinction events with extensive data on species occurrences in a sample of catchments in a nearby municipality (Paragominas) that encompass a gradient of past forest loss. We found evidence for the possible extinction of 47 species (14% of the regional species pool) that were unreported from 1980 to 2013 (80% last recorded between 1900 and 1980). Seventeen species appear on the International Union for Conservation of Nature Red List, and many of these are large‐bodied. The species lost from the region immediately around Belém are similar to those which are currently restricted to well‐forested catchments in Paragominas. Although we anticipate the future rediscovery or recolonization of some species inferred to be extinct by our calculations, we also expect that there are likely to be additional local extinctions, not reported here, given the ongoing loss and degradation of remaining areas of native vegetation across eastern Amazonia. Doscientos Años de Extinciones Locales de Aves en la Amazonia Oriental  相似文献   
55.
Restoring connectivity between fragmented populations is an important tool for alleviating genetic threats to endangered species. Yet recovery plans typically lack quantitative criteria for ensuring such population connectivity. We demonstrate how models that integrate habitat, genetic, and demographic data can be used to develop connectivity criteria for the endangered Mexican wolf (Canis lupus baileyi), which is currently being restored to the wild from a captive population descended from 7 founders. We used population viability analysis that incorporated pedigree data to evaluate the relation between connectivity and persistence for a restored Mexican wolf metapopulation of 3 populations of equal size. Decreasing dispersal rates greatly increased extinction risk for small populations (<150–200), especially as dispersal rates dropped below 0.5 genetically effective migrants per generation. We compared observed migration rates in the Northern Rocky Mountains (NRM) wolf metapopulation to 2 habitat‐based effective distance metrics, least‐cost and resistance distance. We then used effective distance between potential primary core populations in a restored Mexican wolf metapopulation to evaluate potential dispersal rates. Although potential connectivity was lower in the Mexican wolf versus the NRM wolf metapopulation, a connectivity rate of >0.5 genetically effective migrants per generation may be achievable via natural dispersal under current landscape conditions. When sufficient data are available, these methods allow planners to move beyond general aspirational connectivity goals or rules of thumb to develop objective and measurable connectivity criteria that more effectively support species recovery. The shift from simple connectivity rules of thumb to species‐specific analyses parallels the previous shift from general minimum‐viable‐population thresholds to detailed viability modeling in endangered species recovery planning. Desarrollo de Criterios de Conectividad Metapoblacional a Partir de Datos Genéticos y de Hábitat para Recuperar al Lobo Mexicano en Peligro de Extinción  相似文献   
56.
Natural scientists are increasingly interested in social research because they recognize that conservation problems are commonly social problems. Interpreting social research, however, requires at least a basic understanding of the philosophical principles and theoretical assumptions of the discipline, which are embedded in the design of social research. Natural scientists who engage in social science but are unfamiliar with these principles and assumptions can misinterpret their results. We developed a guide to assist natural scientists in understanding the philosophical basis of social science to support the meaningful interpretation of social research outcomes. The 3 fundamental elements of research are ontology, what exists in the human world that researchers can acquire knowledge about; epistemology, how knowledge is created; and philosophical perspective, the philosophical orientation of the researcher that guides her or his action. Many elements of the guide also apply to the natural sciences. Natural scientists can use the guide to assist them in interpreting social science research to determine how the ontological position of the researcher can influence the nature of the research; how the epistemological position can be used to support the legitimacy of different types of knowledge; and how philosophical perspective can shape the researcher's choice of methods and affect interpretation, communication, and application of results. The use of this guide can also support and promote the effective integration of the natural and social sciences to generate more insightful and relevant conservation research outcomes. Una Guía para Entender la Investigación de Ciencias Sociales para las Ciencias Naturales Katie Moon  相似文献   
57.
Conserving or restoring landscape connectivity between patches of breeding habitat is a common strategy to protect threatened species from habitat fragmentation. By managing connectivity for some species, usually charismatic vertebrates, it is often assumed that these species will serve as conservation umbrellas for other species. We tested this assumption by developing a quantitative method to measure overlap in dispersal habitat of 3 threatened species—a bird (the umbrella), a butterfly, and a frog—inhabiting the same fragmented landscape. Dispersal habitat was determined with Circuitscape, which was parameterized with movement data collected for each species. Despite differences in natural history and breeding habitat, we found substantial overlap in the spatial distributions of areas important for dispersal of this suite of taxa. However, the intuitive umbrella species (the bird) did not have the highest overlap with other species in terms of the areas that supported connectivity. Nevertheless, we contend that when there are no irreconcilable differences between the dispersal habitats of species that cohabitate on the landscape, managing for umbrella species can help conserve or restore connectivity simultaneously for multiple threatened species with different habitat requirements. Definición y Evaluación del Concepto de Especie Paraguas para Conservar y Restaurar la Conectividad de Paisajes  相似文献   
58.
Conservation programs often manage populations indirectly through the landscapes in which they live. Empirically, linking reproductive success with landscape structure and anthropogenic change is a first step in understanding and managing the spatial mechanisms that affect reproduction, but this link is not sufficiently informed by data. Hierarchical multistate occupancy models can forge these links by estimating spatial patterns of reproductive success across landscapes. To illustrate, we surveyed the occurrence of grizzly bears (Ursus arctos) in the Canadian Rocky Mountains Alberta, Canada. We deployed camera traps for 6 weeks at 54 surveys sites in different types of land cover. We used hierarchical multistate occupancy models to estimate probability of detection, grizzly bear occupancy, and probability of reproductive success at each site. Grizzly bear occupancy varied among cover types and was greater in herbaceous alpine ecotones than in low‐elevation wetlands or mid‐elevation conifer forests. The conditional probability of reproductive success given grizzly bear occupancy was 30% (SE = 0.14). Grizzly bears with cubs had a higher probability of detection than grizzly bears without cubs, but sites were correctly classified as being occupied by breeding females 49% of the time based on raw data and thus would have been underestimated by half. Repeated surveys and multistate modeling reduced the probability of misclassifying sites occupied by breeders as unoccupied to <2%. The probability of breeding grizzly bear occupancy varied across the landscape. Those patches with highest probabilities of breeding occupancy—herbaceous alpine ecotones—were small and highly dispersed and are projected to shrink as treelines advance due to climate warming. Understanding spatial correlates in breeding distribution is a key requirement for species conservation in the face of climate change and can help identify priorities for landscape management and protection. Patrones Espaciales del Éxito Reproductivo de Osos Pardos, Derivados de Modelos Jerárquicos Multi‐Estado  相似文献   
59.
Approaches to prioritize conservation actions are gaining popularity. However, limited empirical evidence exists on which species might benefit most from threat mitigation and on what combination of threats, if mitigated simultaneously, would result in the best outcomes for biodiversity. We devised a way to prioritize threat mitigation at a regional scale with empirical evidence based on predicted changes to population dynamics—information that is lacking in most threat‐management prioritization frameworks that rely on expert elicitation. We used dynamic occupancy models to investigate the effects of multiple threats (tree cover, grazing, and presence of an hyperaggressive competitor, the Noisy Miner (Manorina melanocephala) on bird‐population dynamics in an endangered woodland community in southeastern Australia. The 3 threatening processes had different effects on different species. We used predicted patch‐colonization probabilities to estimate the benefit to each species of removing one or more threats. We then determined the complementary set of threat‐mitigation strategies that maximized colonization of all species while ensuring that redundant actions with little benefit were avoided. The single action that resulted in the highest colonization was increasing tree cover, which increased patch colonization by 5% and 11% on average across all species and for declining species, respectively. Combining Noisy Miner control with increasing tree cover increased species colonization by 10% and 19% on average for all species and for declining species respectively, and was a higher priority than changing grazing regimes. Guidance for prioritizing threat mitigation is critical in the face of cumulative threatening processes. By incorporating population dynamics in prioritization of threat management, our approach helps ensure funding is not wasted on ineffective management programs that target the wrong threats or species.  相似文献   
60.
The alarming current and predicted species extinction rates have galvanized conservationists in their efforts to avoid future biodiversity losses, but for species extinct in the wild, few options exist. We posed the questions, can these species be restored, and, if so, what role can ex situ plant collections (i.e., botanic gardens, germplasm banks, herbaria) play in the recovery of plant genetic diversity? We reviewed the relevant literature to assess the feasibility of recovering lost plant genetic diversity with using ex situ material and the probability of survival of subsequent translocations. Thirteen attempts to recover species extinct in the wild were found, most of which used material preserved in botanic gardens (12) and seed banks (2). One case of a locally extirpated population was recovered from herbarium material. Eight (60%) of these cases were successful or partially successful translocations of the focal species or population; the other 5 failed or it was too early to determine the outcome. Limiting factors of the use of ex situ source material for the restoration of plant genetic diversity in the wild include the scarcity of source material, low viability and reduced longevity of the material, low genetic variation, lack of evolution (especially for material stored in germplasm banks and herbaria), and socioeconomic factors. However, modern collecting practices present opportunities for plant conservation, such as improved collecting protocols and improved cultivation and storage conditions. Our findings suggest that all types of ex situ collections may contribute effectively to plant species conservation if their use is informed by a thorough understanding of the aforementioned problems. We conclude that the recovery of plant species currently classified as extinct in the wild is not 100% successful, and the possibility of successful reintroduction should not be used to justify insufficient in situ conservation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号