首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   32篇
安全科学   2篇
废物处理   1篇
环保管理   1篇
基础理论   119篇
  2023年   9篇
  2022年   5篇
  2021年   10篇
  2020年   14篇
  2019年   12篇
  2018年   10篇
  2017年   8篇
  2016年   6篇
  2015年   8篇
  2014年   6篇
  2013年   12篇
  2012年   6篇
  2011年   3篇
  2010年   9篇
  2009年   2篇
  2008年   3篇
排序方式: 共有123条查询结果,搜索用时 62 毫秒
51.
Abstract: Much of the remaining grassland, particularly in North America, is privately owned, and its conversion to cultivated cropland is largely driven by economics. An understanding of why landowners convert grassland to cropland could facilitate more effective design of grassland‐conservation programs. We built an empirical model of land‐use change in the Prairie Pothole Region (north‐central United States) to estimate the probability of grassland conversion to alternative agricultural land uses, including cultivated crops. Conversion was largely driven by landscape characteristics and the economic returns of alternative uses. Our estimate of the probability of grassland conversion to cultivated crops (1.33% on average from 1979 to 1997) was higher than past estimates (0.4%). Our model also predicted that grassland‐conversion probabilities will increase if agricultural commodity prices continue to follow the trends observed from 2001 to 2006 (0.93% probability of grassland conversion to cultivated crops in 2006 to 1.5% in 2011). Thus, nearly 121 million ha (30 million acres) of grassland could be converted by 2011. Conversion probabilities, however, are spatially heterogeneous (range 0.2% to 3%), depending on characteristics of a parcel (e.g., soil quality and economic returns). Grassland parcels with relatively high‐quality land for agricultural production are more likely to be converted to cultivated crops than lower‐quality parcels and are more responsive to changes in the economic returns on alternative agricultural land uses (i.e., conversion probability increases by a larger magnitude for high‐quality parcels when economics returns to alternative uses increase). Our results suggest that grassland conservation programs could be proactively targeted toward high‐risk parcels by anticipating changes in economic returns, such as could occur if a new biofuel processing plant were to be built in an area.  相似文献   
52.
Millennia of human conflict with wildlife have built a culture of intolerance toward wildlife among some stakeholders. We explored 2 key obstacles to improved human–wildlife coexistence: coexistence inequality (how the costs and benefits of coexisting with wildlife are unequally shared) and intolerance. The costs of coexisting with wildlife are often disproportionately borne by the so-called global south and rural communities, and the benefits often flow to the global north and urban dwellers. Attitudes and behaviors toward wildlife (tolerance versus intolerance) vary with social and cultural norms. We suggest more empathetic advocacy is needed that, for example, promotes conservation while appropriately considering those who bear the costs of conflict with wildlife. To achieve more equitable cost-sharing, we suggest limiting the costs incurred by those most affected or by sharing those costs more widely. For example, we advocate for the development of improved wildlife compensation schemes, increasing the scale of rewilding efforts, and preventing wildlife-derived revenue leaching out of the local communities bearing the costs of coexistence.  相似文献   
53.
Conflict between people and carnivores can lead to the widespread killing of predators in retaliation for livestock loss and is a major threat to predator populations. In Kenya, a large, rural, pastoralist population comes into regular conflict with predators, which persist across southern Kenya. We explored the social and psychological backdrop to livestock management practices in this area in a process designed to be easy to use and suitable for use across large areas for the study of conflict and transboundary implementation of wildlife conflict reduction measures, focusing on community involvement and needs. We carried out fully structured interviews of livestock managers with a survey tool that examined how social and psychological factors may influence livestock management behavior. We compared survey responses on 3 sites across the study area, resulting in 723 usable responses. Efficacy of individuals’ livestock management varied between and within communities. This variation was partially explained by normative and control beliefs regarding livestock management. Individual livestock managers’ self-reported management issues were often an accurate reflection of their practical management difficulties. Psychological norms, control beliefs, and attitudes differed among sites, and these differences partially explained patterns associated with conflict (i.e., variation in livestock management behavior). Thus, we conclude that a one-size-fits-all approach to improving livestock management and reducing human–predator conflict is not suitable.  相似文献   
54.
Indian Himalayan basins are earmarked for widespread dam building, but aggregate effects of these dams on terrestrial ecosystems are unknown. We mapped distribution of 292 dams (under construction and proposed) and projected effects of these dams on terrestrial ecosystems under different scenarios of land‐cover loss. We analyzed land‐cover data of the Himalayan valleys, where dams are located. We estimated dam density on fifth‐ through seventh‐order rivers and compared these estimates with current global figures. We used a species–area relation model (SAR) to predict short‐ and long‐term species extinctions driven by deforestation. We used scatter plots and correlation studies to analyze distribution patterns of species and dams and to reveal potential overlap between species‐rich areas and dam sites. We investigated effects of disturbance on community structure of undisturbed forests. Nearly 90% of Indian Himalayan valleys would be affected by dam building and 27% of these dams would affect dense forests. Our model projected that 54,117 ha of forests would be submerged and 114,361 ha would be damaged by dam‐related activities. A dam density of 0.3247/1000 km2 would be nearly 62 times greater than current average global figures; the average of 1 dam for every 32 km of river channel would be 1.5 times higher than figures reported for U.S. rivers. Our results show that most dams would be located in species‐rich areas of the Himalaya. The SAR model projected that by 2025, deforestation due to dam building would likely result in extinction of 22 angiosperm and 7 vertebrate taxa. Disturbance due to dam building would likely reduce tree species richness by 35%, tree density by 42%, and tree basal cover by 30% in dense forests. These results, combined with relatively weak national environmental impact assessment and implementation, point toward significant loss of species if all proposed dams in the Indian Himalaya are constructed. Efectos Potenciales del Desarrollo Hidroeléctrico Actual y Propuesto sobre la Diversidad Biológica Terrestre en el Himalaya Hindú  相似文献   
55.
Over the past 5 decades, scientists have been documenting negative anthropogenic environmental change, expressing increasing alarm, and urging dramatic socioecological transformation in response. A host of international meetings have been held, but the erosion of biological diversity continues to accelerate. Why, then, has no effective political action been taken? We contend that part of the answer may lie in the anthropocentric ethical premises and moral rhetoric typically deployed in the cause of conservation. We further argue that it is essential to advance moral arguments for biodiversity conservation that are not just based on perceived human interests but on ecocentric values, namely, convictions that species and ecosystems have value and interests that should be respected regardless of whether they serve human needs and aspirations. A broader array of moral rationales for biodiversity conservation, we conclude, would be more likely to lead to effective plans, adopted and enforced by governments, designed to conserve biological diversity. A good place to start in this regard would be to explicitly incorporate ecocentric values into the recommendations that will be made at the conclusion of the 15th meeting of the parties to the Convention on Biological Diversity, scheduled to be held in October 2020.  相似文献   
56.
The persistence of endangered species may depend on the fate of a very small number of individual animals. In situ conservation alone may sometimes be insufficient. In these instances, the International Union for Conservation of Nature provides guidelines for ex situ conservation and the Convention on Biological Diversity (CBD) indicates how ex situ management can support the CBD's objectives by providing insurance policies for species. The circumstances that justify its use are uncertain. To evaluate the current in situ extinction risk and ex situ management of 43 critically endangered species of mammalian megafauna, we used nonmetric multidimensional scaling and geopolitical variables related to governance, economics, and national policy within their extant ranges. We then fitted generalized additive models to assess the contribution of each variable to the ordination. Fifteen (almost one-third) of the world's terrestrial mammalian megafauna are not the subject of any ex situ management. Seventy-three percent of these taxa occur in areas characterized by political uncertainty, such as border zones or areas affected by armed conflicts, mainly in Africa and the Middle East. A further 23% of taxa in ex situ programs do not meet sustainability criteria for inbreeding avoidance. Strategic conservation planning, such as the One Plan approach, may improve ex situ management for these taxa. Given the escalating trend in threats afflicting megafauna, ex situ management should be considered more rigorously, particularly in politically unstable regions, to achieve CBD Target 12 (prevent extinction of threatened species).  相似文献   
57.
Abstract: Even under the most optimistic scenarios, during the next century human‐caused climate change will threaten many wild populations and species. The most useful conservation response is to enlarge and link protected areas to support range shifts by plants and animals. To prioritize land for reserves and linkages, some scientists attempt to chain together four highly uncertain models (emission scenarios, global air–ocean circulation, regional circulation, and biotic response). This approach has high risk of error propagation and compounding and produces outputs at a coarser scale than conservation decisions. Instead, we advocate identifying land facets—recurring landscape units with uniform topographic and soil attributes—and designing reserves and linkages for diversity and interspersion of these units. This coarse‐filter approach would conserve the arenas of biological activity, rather than the temporary occupants of those arenas. Integrative, context‐sensitive variables, such as insolation and topographic wetness, are useful for defining land facets. Classification procedures such as k‐means or fuzzy clustering are a good way to define land facets because they can analyze millions of pixels and are insensitive to case order. In regions lacking useful soil maps, river systems or riparian plants can indicate important facets. Conservation planners should set higher representation targets for rare and distinctive facets. High interspersion of land facets can promote ecological processes, evolutionary interaction, and range shift. Relevant studies suggest land‐facet diversity is a good surrogate for today's biodiversity, but fails to conserve some species. To minimize such failures, a reserve design based on land facets should complement, rather than replace, other approaches. Designs based on land facets are not biased toward data‐rich areas and can be applied where no maps of land cover exist.  相似文献   
58.
As ecological data and associated analyses become more widely available, synthesizing results for effective communication with stakeholders is essential. In the case of wildlife corridors, managers in human-dominated landscapes need to identify both the locations of corridors and multiple stakeholders for effective oversight. We synthesized five independent studies of tiger (Panthera tigris) connectivity in central India, a global priority landscape for tiger conservation, to quantify agreement on landscape permeability for tiger movement and potential movement pathways. We used the latter analysis to identify connectivity areas on which studies agreed and stakeholders associated with these areas to determine relevant participants in corridor management. Three or more of the five studies’ resistance layers agreed in 63% of the study area. Areas in which all studies agree on resistance were of primarily low (66%, e.g., forest) and high (24%, e.g., urban) resistance. Agreement was lower in intermediate resistance areas (e.g., agriculture). Despite these differences, the studies largely agreed on areas with high levels of potential movement: >40% of high average (top 20%) current-flow pixels were also in the top 20% of current-flow agreement pixels (measured by low variation), indicating consensus connectivity areas (CCAs) as conservation priorities. Roughly 70% of the CCAs fell within village administrative boundaries, and 100% overlapped forest department management boundaries, suggesting that people live and use forests within these priority areas. Over 16% of total CCAs’ area was within 1 km of linear infrastructure (437 road, 170 railway, 179 transmission line, and 339 canal crossings; 105 mines within 1 km of CCAs). In 2019, 78% of forest land diversions for infrastructure and mining in Madhya Pradesh (which comprises most of the study region) took place in districts with CCAs. Acute competition for land in this landscape with globally important wildlife corridors calls for an effective comanagement strategy involving local communities, forest departments, and infrastructure planners.  相似文献   
59.
Abstract: Tradable permits have been applied in many areas of environmental policy and may be a response to increasing calls for flexible conservation instruments that successfully conserve biodiversity while allowing for economic development. The idea behind applying tradable permits to conservation is that developers wishing to turn land to economic purposes, thereby destroying valuable habitat, may only do so if they submit a permit to the conservation agency showing that habitat of at least the equivalent ecological value is restored elsewhere. The developer himself does not need to carry out the restoration, but may buy a permit from a third party, thus allowing a market to emerge. Nevertheless, the application of tradable permits to biodiversity conservation is a complex issue because destroyed and restored habitats are likely to differ. There may be various trade‐offs between the ecological requirements that destroyed and restored habitats be as similar as possible, and the need for a certain level of market activity to have a functioning trading system. The success of tradable permits as an instrument for reconciling the conflicts between economic development and conservation depends on the existence of certain economic, institutional, and ecological preconditions, for example, a functioning institutional framework, sufficient expert knowledge, and adequate monitoring and enforcement mechanisms.  相似文献   
60.
Eight conventions make up the biodiversity cluster of multilateral environmental agreements (MEAs) that provide the critical international legal framework for the conservation and sustainable use of nature. However, concerns about the rate of implementation of the conventions at the national level have triggered discussions about the effectiveness of these MEAs in halting the loss of biodiversity. Two main concerns have emerged: lack of capacity and resources and lack of coherence in implementing multiple conventions. We focused on the latter and considered the mechanisms by which international conventions are translated into national policy. Specifically, we examined how the Strategic Plan for Biodiversity 2011–2020 and the associated Aichi Biodiversity Targets have functioned as a unifying grand plan for biodiversity conservation. This strategic plan has been used to coordinate and align targets to promote and enable more effective implementation across all biodiversity-related conventions. Results of a survey of 139 key stakeholders from 88 countries suggests streamlining across ministries and agencies, improved coordination mechanisms with all relevant stakeholders, and better knowledge sharing between conventions could improve cooperation among biodiversity-related conventions. The roadmap for improving synergies among conventions agreed to at the 13th Convention on Biological Diversity's Conference of Parties in 2016 includes actions such as mechanisms to avoid duplication in national reporting and monitoring on conventions and capacity building related to information and knowledge sharing. We suggest the scientific community can actively engage and contribute to the policy process by establishing a science-policy platform to address knowledge gaps; improving data gathering, reporting, and monitoring; developing indicators that adequately support implementation of national plans and strategies; and providing evidence-based recommendations to policy makers. The latter will be particularly important as 2020 approaches and work to develop a new biodiversity agenda for the next decade is beginning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号