首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12412篇
  免费   1401篇
  国内免费   6602篇
安全科学   504篇
废物处理   560篇
环保管理   1187篇
综合类   11158篇
基础理论   3379篇
环境理论   6篇
污染及防治   1984篇
评价与监测   744篇
社会与环境   717篇
灾害及防治   176篇
  2024年   110篇
  2023年   423篇
  2022年   698篇
  2021年   718篇
  2020年   644篇
  2019年   660篇
  2018年   659篇
  2017年   682篇
  2016年   859篇
  2015年   870篇
  2014年   925篇
  2013年   1513篇
  2012年   1329篇
  2011年   1319篇
  2010年   957篇
  2009年   869篇
  2008年   747篇
  2007年   914篇
  2006年   892篇
  2005年   660篇
  2004年   553篇
  2003年   557篇
  2002年   446篇
  2001年   411篇
  2000年   357篇
  1999年   275篇
  1998年   201篇
  1997年   196篇
  1996年   193篇
  1995年   172篇
  1994年   143篇
  1993年   111篇
  1992年   80篇
  1991年   71篇
  1990年   50篇
  1989年   38篇
  1988年   19篇
  1987年   21篇
  1986年   12篇
  1985年   4篇
  1984年   7篇
  1983年   6篇
  1982年   5篇
  1981年   7篇
  1980年   7篇
  1979年   6篇
  1978年   4篇
  1973年   2篇
  1972年   4篇
  1971年   2篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
891.
非饱和土土-水特征曲线(SWCC)表示了土中含水量与吸力之间的关系。针对非饱和土干-湿循环过程中的吸力变化特征,开展试验研究。采用体积压力板仪实现非饱和土的脱湿和吸湿过程。试验成果显示:(1)土-水特征曲线是不稳定的,它与土体含水率的变化路径有关;(2)在干湿循环过程中,相同的基质吸力具有不同的含水量。  相似文献   
892.
通过对植被混凝土室内试验结果的归纳和分析,研究了水泥掺入比、龄期和浸水条件对植被混凝土无侧限抗压强度的影响。  相似文献   
893.
Ambient aerosols were collected during 2000–2001 in Gainesville, Florida, using a micro-orifice uniform deposit impactor (MOUDI) to study mass size distribution and carbon composition. A bimodal mass distribution was found in every sample with major peaks for aerosols ranging from 0.32 to 0.56 μm, and 3.2 to 5.6 μm in diameter. The two distributions represent the fine mode (<2.5 μm) and the coarse mode (>2.5 μm) of particle size. Averaged over all sites and seasons, coarse particles consisted of 15% carbon while fine particles consisted of 22% carbon. Considerable variation was noted between winter and summer seasons. Smoke from fireplaces in winter appeared to be an important factor for the carbon, especially the elemental carbon contribution. In summer, organic carbon was more abundant. The maximum secondary organic carbon was also found in this season (7.0 μg m−3), and the concentration is between those observed in urban areas (15–20 μg m−3) and in rural areas (4–5 μg m−3). However, unlike in large cities where photochemical activity of anthropogenic emissions are determinants of carbon composition, biogenic sources were likely the key factor in Gainesville. Other critical factors that affect the distribution, shape and concentration were precipitation, brushfire and wind.  相似文献   
894.
Libby, Montana is the only PM2.5 nonattainment area in the western United States with the exceptions of parts of southern California. During January through March 2005, a particulate matter (PM) sampling program was conducted within Libby’s elementary and middle schools to establish baseline indoor PM concentrations before a wood stove change-out program is implemented over the next several years. As part of this program, indoor concentrations of PM mass, organic carbon (OC), and elemental carbon (EC) in five different size fractions (>2.5, 1.0–2.5, 0.5–1.0, 0.25–0.5, and <0.25 μm) were measured. Total measured PM mass concentrations were much higher inside the elementary school, with particle size fraction (>2.5, 0.5–1.0, 0.25–0.5, and <0.25 μm) concentrations between 2 and 5 times higher when compared to the middle school. The 1.0–2.5 μm fraction had the largest difference between the two sites, with elementary school concentrations nearly 10 times higher than the middle school values. The carbon component for the schools’ indoor PM was found to be predominantly composed of OC. Measured total OC and EC concentrations, as well as concentrations within individual size fractions, were an average of two to five times higher at the elementary school when compared to the middle school. For the ultrafine fraction (<0.25), EC concentrations were similar between each of the schools. Despite the differences in concentrations between the schools at the various fraction levels, the OC/EC ratio was determined to be similar.  相似文献   
895.
We determined the maximum amounts of added phenanthrene, chrysene, and 2,5-dichlorobiphenyl sorbed onto high-energy adsorption sites in a sediment on bi-solute experiments. The bi-solute pairs were phenanthrene/chrysene and phenanthrene/2,5-dichlorobiphenyl. On the bi-solute sorption experiments, one solute was introduced and equilibrated with sediment prior to addition of the second solute. The values for the maximum amounts adsorbed onto high-energy sites revealed that, after equilibration of the first solute, still some high-energy sites could be occupied by the second solute. Phenanthrene, chrysene, and 2,5-dichlorobiphenyl seem to share about 30% of the accessible high-energy adsorption sites in the sediment employed.  相似文献   
896.
Humans’ superiority over all other organisms on earth rests on five main foundations: command of fire requiring fuel; controlled production of food and other biotic substances; utilization of metals and other non-living materials for construction and appliances; technically determined, urban-oriented living standard; economically and culturally regulated societal organization. The young discipline of ecology has revealed that the progress of civilization and technology attained, and being further pursued by humankind, and generally taken for granted and permanent, is leading into ecological traps. This metaphor circumscribes ecological situations where finite resources are being exhausted or rendered non-utilizable without a realistic prospect of restitution. Energy, food and land are the principal, closely interrelated traps; but the absolutely decisive resource in question is land whose increasing scarcity is totally underrated. Land is needed for fulfilling growing food demands, for producing renewable energy in the post-fossil and post-nuclear era, for maintaining other ecosystem services, for urban-industrial uses, transport, material extraction, refuse deposition, but also for leisure, recreation, and nature conservation. All these needs compete for land, food and non-food biomass production moreover for good soils that are scarcer than ever. We are preoccupied with fighting climate change and loss of biodiversity; but these are minor problems we could adapt to, albeit painfully, and their solution will fail if we are caught in the interrelated traps of energy, food, and land scarcity. Land and soils, finite and irreproducible resources, are the key issues we have to devote our work to, based on careful ecological information, planning and design for proper uses and purposes. The article concludes with a short reflection on economy and competition as general driving forces, and on the role and reputation of today’s ecology. Updated version of the keynote lecture presented at the EcoSummit 2007 in Beijing, China, May 24. The article is gratefully dedicated to the memory of my late colleague and friend Frank B. Golley.  相似文献   
897.
Spectroscopic characteristics of dissolved organic matter (DOM) in a large dam reservoir were determined using ultraviolet absorbance and fluorescence spectroscopy to investigate spatial distribution of DOM composition after turbid storm runoff. Water samples were collected along a longitudinal axis of the reservoir at three to four depths after a severe storm runoff. Vertical profiles of turbidity data showed that a turbid water layer was located at a middle depth of the entire reservoir. The spectroscopic characteristics of DOM samples in the turbid water layer were similar to those of terrestrial DOM, as demonstrated by the higher specific UV absorbance (SUVA) and the lower fluorescence emission intensity ratio (F 450/F 500) compared to other surrounding DOM samples in the reservoir. Synchronous fluorescence spectroscopy revealed that higher content of humic-like DOM composition was contained in the turbid water. Fluorescence excitation–emission matrix (EEM) showed that lower content of protein-like aromatic amino acids was present in the turbid water DOM. The highest protein-like fluorescence was typically observed at a bottom layer of each sampling location. The bottom water DOM exhibited extremely high protein-like florescence near the dam site. The particular observation was attributed to the low water temperature and the isolation of the local bottom water due to the upper location of the withdrawal outlet near the dam. Our results suggest that the distribution of DOM composition in a dam reservoir is strongly influenced by the outflow operation, such as selective withdrawal, as well as terrestrial-origin DOM inputs from storm runoff.  相似文献   
898.
The atmosphere is a particularly difficult analytical system because of the very low levels of substances to be analysed, sharp variations in pollutant levels with time and location, differences in wind, temperature and humidity. This makes the selection of an efficient sampling technique for air analysis a key step to reliable results. Generally, methods for volatile organic compounds sampling include collection of the whole air or preconcentration of samples on adsorbents. All the methods vary from each other according to the sampling technique, type of sorbent, method of extraction and identification technique. In this review paper we discuss various important aspects for sampling of volatile organic compounds by the widely used and advanced sampling methods. Characteristics of various adsorbents used for VOCs sampling are also described. Furthermore, this paper makes an effort to comprehensively review the concentration levels of volatile organic compounds along with the methodology used for analysis, in major cities of the world.  相似文献   
899.
阿特拉津在土壤中的生物降解研究   总被引:25,自引:0,他引:25  
运用恒温培养法研究了阿特拉津在河北省白洋淀地区农田土壤中的生物降解动力学,并从中分离鉴定了土壤中降解阿特拉津的优势菌种,研究结果表明,该土壤对阿特拉津具有一定的降解能力,非生物+生物的降解、非生物降解和生物降解的速率分别为0.0262d^-1,0.005548d^-1和0.008194d^-1,半衰期分别为26d,125d和85d,发现土壤中降解阿特拉津的优势菌种为蜡状芽孢杆菌(Bacillus  相似文献   
900.
提出了以GM(1,1)模型拟合发展的趋势、傅里叶变换撮周期分量AR(p)模型模拟随机过程的集成预报模型,并用于黄河三角洲人工草场群落土壤盐分的定量研究中,经理论和应用检验证明:该模型能以较高的精度模拟或预报土壤盐分在较长时期内的动态变化过程,方法简单,计算工作量小,并优于传统的单一预报模型。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号