首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   974篇
  免费   40篇
  国内免费   70篇
安全科学   81篇
废物处理   14篇
环保管理   305篇
综合类   158篇
基础理论   332篇
环境理论   1篇
污染及防治   75篇
评价与监测   51篇
社会与环境   48篇
灾害及防治   19篇
  2023年   16篇
  2022年   10篇
  2021年   29篇
  2020年   25篇
  2019年   18篇
  2018年   10篇
  2017年   18篇
  2016年   32篇
  2015年   25篇
  2014年   24篇
  2013年   60篇
  2012年   24篇
  2011年   72篇
  2010年   49篇
  2009年   82篇
  2008年   63篇
  2007年   50篇
  2006年   68篇
  2005年   47篇
  2004年   33篇
  2003年   31篇
  2002年   31篇
  2001年   22篇
  2000年   24篇
  1999年   13篇
  1998年   21篇
  1997年   15篇
  1996年   14篇
  1995年   13篇
  1994年   9篇
  1993年   9篇
  1991年   4篇
  1990年   7篇
  1989年   8篇
  1988年   6篇
  1987年   9篇
  1986年   6篇
  1985年   7篇
  1984年   4篇
  1983年   6篇
  1981年   9篇
  1980年   7篇
  1979年   12篇
  1978年   6篇
  1977年   5篇
  1975年   3篇
  1973年   5篇
  1972年   7篇
  1971年   5篇
  1970年   3篇
排序方式: 共有1084条查询结果,搜索用时 109 毫秒
291.
/ An effective groundwater protection program requires understanding of water flow and contaminant transport processes in the subsurface. Although many mathematical models have been developed to simulate the processes, few actually are used in groundwater protection programs due to the difficulties in data collection, model selection, and model implementation. This study presents a conceptual design of a GIS-supported model selection system that evaluates available data and mathematical models to facilitate groundwater protection programs. Steady-state groundwater and contaminant transport models applied in isotropic aquifers are placed into four classes to simulate conservative or nonconservative contaminant transports in simple or complex geohydrological conditions. After analyzing specific study objectives, available data, and model requirements, the proposed system selects a class of models that can be used in simulation and recommends any need for additional data collection. This study initiates an effort to integrate GIS, mathematical models, and expert knowledge in one system to promote the application of appropriate groundwater models. The new technology of GIS and digital data-base management makes it possible to develop such a system in practice.KEY WORDS: Groundwater models; Geographic information systems  相似文献   
292.
ABSTRACT: A significant portion of all pollutants entering surface waters (streams, lakes, estuaries, and wetlands) derives from non-point source (NPS) pollution and, in particular, agricultural activities. The first step in restoring a water resource is to focus on the primary water quality problem in the watershed. The most appropriate NPS control measures, which include best management practices (BMPs) and landscape features, such as wetlands and riparian areas, can then be selected and positioned to minimize or mitigate the identified pollutant(s). A computer-based decision sup. port and educational software system, WATERSHEDSS (WATER, Soil, and Hydro-Environmental Decision Support System), has been developed to aid managers in defining their water quality problems and selecting appropriate NPS control measures. The three primary objectives of WATERSHEDSS are (1) to transfer water quality and land treatment information to watershed managers in order to assist them with appropriate land management/land treatment decisions; (2) to assess NPS pollution in a watershed based on user-supplied information and decisions; and (3) to evaluate, through geographical information systems-assisted modeling, the water quality effects of alternative land treatment scenarios. WATERSHEDSS is available on the World Wide Web (Web) at http://h2osparc.wq.ncsu.edu .  相似文献   
293.
The rapid increase in atmospheric concentrations of greenhouse gases has caused concern because of their potential to alter the earth's radiation budget and disrupt current climate patterns While there are many uncertainties associated with use of general circulation models (GCMs), GCMs are currently the best available technology to project changes in climate associated with elevated gas concentrations. Results indicate increases in global temperature and changes in global precipitation patterns are likely as a result of doubled CO2. GCMs are not reliable for use at the regional scale because local scale processes and geography are not taken into account. Comparison of results from five GCMs in three regions of the United States indicate high variability across regions and among models depending on season and climate variable. Statistical methods of scaling model output and nesting finer resolution models in global models are two techniques that may improve projections. Despite the many limitations in GCMs, they are useful tools to explore climate-earth system dynamics when used in conjunction with water resource and ecosystem models. A variety of water resource models showed significant alteration of regional hydrology when run with both GCM-generated and hypothetical climate scenarios, regardless of region or model complexity. Similarly, ecological models demonstrate the sensitivity of ecosystem production, nutrient dynamics, and distribution to changes in climate and CO2 levels. We recommend the use of GCM-based scenarios in conjunction with water resource and ecosystem models to guide environmental management and policy in a “no-regrets” framework or as part of a precautionary approach to natural resource protection.  相似文献   
294.
ABSTRACT: Model predictions of the relatively simple soil compartment model SESOIL are compared with those of the more data-intensive terrestrial ecosystem hydrology model AGTEHM. Comparisons were performed using data from a deciduous forest stand watershed, a grassland watershed, and two agricultural field plots. Good agreement was obtained between model predictions for annual values of infiltration, evapotranspiration, surface runoff, and groundwater runoff. SESOIL model predictions also compare well with empirical measurements at the forest stand and the grassland watersheds.  相似文献   
295.
ABSTRACT: A semi-distributed deterministic model for real-time flood forecasting in large basins is proposed. Variability of rainfall and losses in space is preserved and the effective rainfall-direct runoff model segment based on the Clark procedure is incorporated. The distribution of losses in space is assumed proportional to rainfall intensity and their evolution in time is represented by the φ-index; furthermore, an initial period without production of effective rainfall is considered. The first estimation of losses and the associated forecasts of flow are performed at the time corresponding to the first rise observed in the hydrograph. Then the forecasts of flow are corrected at each subsequent time step through the updating of the φ-index. The model was tested by using rainfall-runoff events observed on two Italian basins and the predictions of flow for lead times up to six hours agree reasonably well with the observations in each event. For example, for the coefficient of persistence, which compares the model forecasts with those generated by the no-model assumption, appreciable positive values were computed. In particular, for the larger basin with an area of 4,147 km2, the mean values were 0.4, 0.4 and 0.5 for forecast lead times of two hours, four hours and six hours, respectively. Good performance of the model is also shown by a comparison of its flow predictions with those derived from a unit hydrograph based model  相似文献   
296.
Remotely sensed variables such as land cover type and snow-cover extent can currently be used directly and effectively in a few specific hydrologic models. Regression models can also be developed using physiographic and snow-cover data to permit estimation of discharge characteristics over extended periods such as a season or year. Most models, however, are not of an appropriate design to readily accept as input the various types of remote sensing parameters that can be obtained now or in the future. Because this new technology has the potential for producing hydrologic data that has significant information content on an areal basis, both inexpensively and repetitively, effort should be devoted now to either modifying existing models or developing new models that can use these data. Minor modifications would at least allow the remote sensing data to be used in an ancillary way to update the model state variables, whereas major structural modifications or new models would permit direct input of the data through remote sensing compatible algorithms. Although current remote sensing inputs to hydrologic models employ only visible and near infrared data, model modification or development should accommodate microwave and thermal infrared data that will be more widely available in the future.  相似文献   
297.
The British Ecological Society has suggested that computer‐based techniques could be used in the coordination of policies across different land uses in upland planning. This paper looks briefly at one such technique — a linear programming model — and describes its use at a regional scale for the Sedburgh area in north‐west England. The paper concludes with consideration of why such models are not in more common use.  相似文献   
298.
A sensitivity analysis of a computer model, simulating major water and nitrogen processes of a soil-water-plant-climatic system on an annual basis, was conducted to determine how the model reacts to the variations in selected hydrologic and nitrogen parameters. Two major output variables (namely, total subsurface drain volume and cumulative nitrate loss with subsurface drain water) were selected for the sensitivity analysis. Model sensitivity analysis shows that the model is most sensitive to hydrologic parameters. The model is very sensitive to variations in the initial water content in the soil profile.  相似文献   
299.
Biological damage to sensitive aquatic ecosystems is among the most recognisable, deleterious effects of acidic deposition. We compiled a large spatial database of over 2000 waterbodies across southeastern Canada from various federal, provincial and academic sources. Data for zooplankton, fish, macroinvertebrate (benthos) and loon species richness and occurrence were used to construct statistical models for lakes with varying pH, dissolved organic carbon content and lake size. pH changes, as described and predicted using the Integrated Assessment Model (Lam et al., 1998; Jeffries et al., 2000), were based on the range of emission reductions set forth in the Canada/US Air Quality Agreement (AQA). The scenarios tested include 1983, 1990, 1994 and 2010 sulphate deposition levels. Biotic models were developed for five regions in southeastern Canada (Algoma, Muskoka, and Sudbury, Ontario, southcentral Québec, and Kejimkujik, Nova Scotia) using regression tree, multiple linear regression and logistic regression analyses to make predictions about recovery after emission reductions. The analyses produced different indicator species in different regions, although some species showed consistent trends across regions. Generally, the greatest predicted recovery occurred during the final phase of emission reductions between 1994 and 2010 across all taxonomic groups and regions. The Ontario regions, on average, were predicted to recover to a greater extent than either southcentral Québec or the Kejimkujik area of Nova Scotia. Our results reconfirm that pH 5.5–6.0 is an important threshold below which damage to aquatic biota will remain a major local and regional environmental problem. This damage to biodiversity across trophic levels will persist well into the future if no further reductions in sulphate deposition are implemented.  相似文献   
300.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号