首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   973篇
  免费   78篇
  国内免费   390篇
安全科学   18篇
废物处理   3篇
环保管理   468篇
综合类   586篇
基础理论   109篇
污染及防治   154篇
评价与监测   27篇
社会与环境   57篇
灾害及防治   19篇
  2023年   15篇
  2022年   30篇
  2021年   35篇
  2020年   27篇
  2019年   38篇
  2018年   44篇
  2017年   42篇
  2016年   42篇
  2015年   62篇
  2014年   64篇
  2013年   76篇
  2012年   90篇
  2011年   70篇
  2010年   53篇
  2009年   58篇
  2008年   68篇
  2007年   72篇
  2006年   87篇
  2005年   46篇
  2004年   36篇
  2003年   37篇
  2002年   35篇
  2001年   26篇
  2000年   15篇
  1999年   19篇
  1998年   16篇
  1997年   12篇
  1996年   8篇
  1995年   10篇
  1994年   11篇
  1993年   12篇
  1992年   5篇
  1991年   11篇
  1990年   12篇
  1989年   13篇
  1988年   11篇
  1987年   12篇
  1986年   8篇
  1985年   6篇
  1984年   5篇
  1983年   7篇
  1982年   18篇
  1981年   13篇
  1980年   13篇
  1979年   14篇
  1978年   5篇
  1977年   5篇
  1975年   6篇
  1973年   4篇
  1972年   5篇
排序方式: 共有1441条查询结果,搜索用时 15 毫秒
991.
Observed streamflow and climate data are used to test the hypothesis that climate change is already affecting Rio Grande streamflow volume derived from snowmelt runoff in ways consistent with model‐based projections of 21st‐Century streamflow. Annual and monthly changes in streamflow volume and surface climate variables on the Upper Rio Grande, near its headwaters in southern Colorado, are assessed for water years 1958–2015. Results indicate winter and spring season temperatures in the basin have increased significantly, April 1 snow water equivalent (SWE) has decreased by approximately 25%, and streamflow has declined slightly in the April–July snowmelt runoff season. Small increases in precipitation have reduced the impact of declining snowpack on trends in streamflow. Changes in the snowpack–runoff relationship are noticeable in hydrographs of mean monthly streamflow, but are most apparent in the changing ratios of precipitation (rain + snow, and SWE) to streamflow and in the declining fraction of runoff attributable to snowpack or winter precipitation. The observed changes provide observational confirmation for model projections of decreasing runoff attributable to snowpack, and demonstrate the decreasing utility of snowpack for predicting subsequent streamflow on a seasonal basis in the Upper Rio Grande Basin.  相似文献   
992.
We test the use of a mixed‐effects model for estimating lag to peak for small basins in Maine (drainage areas from 0.8 to 78 km2). Lag to peak is defined as the time between the center of volume of the excess rainfall during a storm event and the resulting peak streamflow. A mixed‐effects model allows for multiple observations at sites without violating model assumptions inherent in traditional ordinary least squares models, which assume each observation is independent. The mixed model includes basin drainage area and maximum 15‐min rainfall depth for individual storms as explanatory features. Based on a remove‐one‐site cross‐validation analysis, the prediction errors of this model ranged from ?42% to +73%. The mixed model substantially outperformed three published models for lag to peak and one published model for centroid lag for estimating lag to peak for small basins in Maine. Lag to peak estimates are a key input to rainfall–runoff models used to design hydraulic infrastructure. The improved accuracy and consistency with model assumptions indicates that mixed models may provide increased data utilization that could enhance models and estimates of lag to peak in other regions.  相似文献   
993.
为了探讨钻屑固化填埋池对周围土壤及水体环境的影响,以西南某页岩气田为例,分别选取了具有代表性的水基钻屑固化填埋池和油基灰渣固化填埋池,先对钻屑固化处置方式和效果进行了评价,再对钻屑固化填埋池土壤径流液及土壤进行了监测,分析了固化填埋池对周边土壤环境的影响。结果表明:钻屑固化体浸出液达到GB8978-1996《污水综合排放标准》一级排放标准,钻屑固化填埋池土壤径流液满足GB5084-2005《农田灌溉水质标准》旱作标准;水基钻屑固化填埋池和油基灰渣固化填埋池上覆土壤重金属综合污染指数分别是0.42、0.45,周边土壤重金属综合污染指数分别是0.45、0.54。钻屑固化填埋池各项监测指标均未超标,土壤重金属综合污染指数均小于0.7,钻屑固化填埋暂时未对周边土壤造成影响,属于清洁水平。短期内钻屑固化填埋效果较好,对周围土壤环境影响较小。  相似文献   
994.
Silage bunker runoff can be a very polluting substance and is increasingly being treated by vegetative treatment areas (VTAs), but little information exists regarding nutrient removal performance of systems receiving this wastewater. Nutrient transport through the shallow subsurface of three VTAs (i.e. one VTA at Farm WNY and two VTAs at Farm CNY) in glaciated soils containing a restrictive layer (i.e., fragipan) was assessed using a mass balance approach. At Farm WNY, the mass removal of ammonium was 63%, nitrate was 0%, and soluble reactive phosphorus (SRP) was 39%. At Farm CNY, the mass removal of ammonium was 79% in the West VTA, but nitrate and SRP increased by 200% and 533%, respectively. Mass removal of ammonium was 67% in the East VTA at Farm CNY; nitrate removal was 86% and SRP removal was 88%. The East VTA received a much higher nutrient loading, which was attributed to a malfunctioning low-flow collection apparatus within the settling basin. Results demonstrate that nutrient reduction mechanisms other than vegetative uptake can be significant within VTAs. Even though increases in nitrate mass were observed, concentrations in 1.65m deep wells indicated that groundwater impairment from leaching of nitrate was not likely. These results offer one of the first evaluations of VTAs treating silage bunker runoff, and highlight the importance of capturing concentrated low flows in VTA systems.  相似文献   
995.
The curve number (CN) method is used to calculate runoff in many hydrologic models, including the Soil and Water Assessment Tool (SWAT). The CN method does not account for the spatial distribution of land cover types, an important factor controlling runoff patterns. The objective of this study was to empirically derive CN values that reflect the strategic placement of native prairie vegetation (NPV) within row crop agricultural landscapes. CNs were derived using precipitation and runoff data from a seven‐year period for 14 small watersheds in Iowa. The watersheds were planted with varying amounts of NPV located in different watershed positions. The least squares and asymptotic least squares methods (LSM) were used to derive CNs using an initial abstraction coefficient (λ) of 0.2 and 0.05. The CNs were verified using leave‐one‐out cross‐validation and adjustment for antecedent moisture conditions (AMC) was tested. The asymptotic method produced CN values for watersheds with NPV treatment that were 8.9 and 14.7% lower than watersheds with 100% row crop at λ = 0.2 and λ = 0.05, respectively. The derived CNs produced Nash‐Sutcliffe efficiency values ranging from 0.4 to 0.7 during validation. Our analyses show the CNs verified best for the asymptotic LSM, when using λ of 0.05 and adjusting for AMC. Further, comparison of derived CNs against an area weighted CN indicated that the placement of vegetation does impact the CN value. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   
996.
Using nonparametric Mann‐Kendall tests, we assessed long‐term (1953‐2012) trends in streamflow and precipitation in Northern California and Southern Oregon at 26 sites regulated by dams and 41 “unregulated” sites. Few (9%) sites had significant decreasing trends in annual precipitation, but September precipitation declined at 70% of sites. Site characteristics such as runoff type (groundwater, snow, or rain) and dam regulation influenced streamflow trends. Decreasing streamflow trends outnumbered increasing trends for most months except at regulated sites for May‐September. Summer (July‐September) streamflow declined at many sites, including 73% of unregulated sites in September. Applying a LOESS regression model of antecedent precipitation vs. average monthly streamflow, we evaluated the underlying streamflow trend caused by factors other than precipitation. Decreasing trends in precipitation‐adjusted streamflow substantially outnumbered increasing trends for most months. As with streamflow, groundwater‐dominated sites had a greater percent of declining trends in precipitation‐adjusted streamflow than other runoff types. The most pristine surface‐runoff‐dominated watersheds within the study area showed no decreases in precipitation‐adjusted streamflow during the summer months. These results suggest that streamflow decreases at other sites were likely due to more increased human withdrawals and vegetation changes than to climate factors other than precipitation quantity.  相似文献   
997.
ABSTRACT Field investigations were conducted at three sites in the Washington, D.C., area to detect accumulation patterns of the trace metals, cadmium, copper, lead, and zinc in the soils of urban stormwater detention basins. The research results seemed to indicate that the use of detention basins to control urban stormwater runoff had few harmful effects to fine textured soils with respect to the study trace metals. Although the trace metals, especially lead and zinc, were found to accumulate in the surface soils of the basins, little significant downward movement of metals in the soil profiles had occurred. Accumulations of metals in the surface soils appeared to be a function of microtopography and the resultant residence time of standing water. The fractions of trace metals that were present in a leachable form in surface soils and stormwater solids were small, with median values ranging from 7.7 percent of the total concentration for Cd to 0.01 percent for Pb.  相似文献   
998.
Nitrogen runoff and leaching losses from two tomato and four corn field plots were compared to model predictions by CREAMS, a field-scale model for Chemicals, Runoff, and Erosion from Agricultural Management Systems. The tomato treatments were (1) trickle irrigation with one-half of applied N at preplant and one-half of applied N through the trickle irrigation system and (2) overhead sprinkler irrigation with one-half of applied N at preplant and one-half of applied N in two equal sidedressings. The corn treatments consisted of multiple N applications, minimum tillage, and “conventional” management. Soil type appeared to influence the ability of CREAMS to predict seasonal trends and treatment influences. Model predictions for N losses from tomato and corn treatments that were located on sandy soils often disagreed with measured values. Treatment influences and seasonal trends for N losses from corn treatments that were located on a higher clay content soil were more satisfactorily predicted by CREAMS. Even though model input parameter estimation and measurement techniques may be imperfect, the simulation ability of CREAMS for predicting N leaching losses from systems on deep sands probably needs to be improved. Sensitivity analyses indicated that annual NC3?-N leaching loss predictions were either minimally or not affected by changes in saturated hydraulic conductivity. Input estimations of the fraction of soil pore space filled at field capacity and soil organic matter were inversely related to annual NO3?-N leaching losses, while potential mineralizable N was directly related to yearly N leaching losses.  相似文献   
999.
Remote sensing data in the form of Landsat computer compatible tapes (CCT) was used to determine land use and land cover as an aid in hydrologic studies that were used to estimated a basinwide runoff index. With the use of the General Electric Image 100 multispectral image processing system in conjunction with the Earth Resources Laboratory Application Software (ELAS), CCT's on February 9, 1976, were analyzed by spectral differences to determine unique land use conditions within the Econlockhatchee (Econ) River Basin, Florida. The result showed that the Landsat data can be successfully used to monitor the USGS land use Level 1. An advantage of using the Landsat data for land use classification is that new data are periodically available for updating the land use information. The Soil Conservation Service curve number was used to establish a basinwide runoff index which includes a prime variable of land use changes with the time. The basinwide runoff index in 1972 (with USGS 1972 Land Use maps) was similar to the one in 1976 (with Landsat data dated February 9, 1976). This implies that the runoff from the entire Econ Basin was not noticeably changed during the period of 1972 and 1976.  相似文献   
1000.
ABSTRACT: Winter Creek is a tributary of the Washita River in south-western Oklahoma. The Soil Conservation Service installed floodwater retarding structures which controlled runoff from 56 percent of a 33-square-mile (8550-hectare) gaged drainage area. Application of a hydrologic model to the flood peaks indicated that the structural treatment reduced the flood peaks an average of 61 percent. The Winter Creek channel has narrowed and deepened since the structural treatment was applied. The severe bank erosion occurring before treatment has been arrested and sediment yield from the watershed has been reduced 50 to 60 percent. In some reaches of the channel there has been a dense growth of trees in recent years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号