全文获取类型
收费全文 | 1801篇 |
免费 | 622篇 |
国内免费 | 542篇 |
专业分类
安全科学 | 591篇 |
废物处理 | 80篇 |
环保管理 | 215篇 |
综合类 | 1047篇 |
基础理论 | 526篇 |
污染及防治 | 254篇 |
评价与监测 | 46篇 |
社会与环境 | 48篇 |
灾害及防治 | 158篇 |
出版年
2024年 | 76篇 |
2023年 | 78篇 |
2022年 | 144篇 |
2021年 | 123篇 |
2020年 | 117篇 |
2019年 | 142篇 |
2018年 | 133篇 |
2017年 | 143篇 |
2016年 | 179篇 |
2015年 | 141篇 |
2014年 | 117篇 |
2013年 | 235篇 |
2012年 | 181篇 |
2011年 | 164篇 |
2010年 | 125篇 |
2009年 | 118篇 |
2008年 | 67篇 |
2007年 | 115篇 |
2006年 | 85篇 |
2005年 | 93篇 |
2004年 | 58篇 |
2003年 | 47篇 |
2002年 | 55篇 |
2001年 | 39篇 |
2000年 | 32篇 |
1999年 | 18篇 |
1998年 | 23篇 |
1997年 | 17篇 |
1996年 | 8篇 |
1995年 | 17篇 |
1994年 | 13篇 |
1993年 | 3篇 |
1992年 | 5篇 |
1991年 | 6篇 |
1990年 | 3篇 |
1989年 | 5篇 |
1988年 | 5篇 |
1987年 | 2篇 |
1986年 | 3篇 |
1984年 | 3篇 |
1982年 | 2篇 |
1981年 | 3篇 |
1980年 | 4篇 |
1978年 | 2篇 |
1976年 | 3篇 |
1975年 | 2篇 |
1974年 | 2篇 |
1973年 | 2篇 |
1972年 | 4篇 |
1970年 | 1篇 |
排序方式: 共有2965条查询结果,搜索用时 15 毫秒
231.
水体真菌种群在调控水库生态系统健康过程中发挥重要作用,为探明热分层诱导深水型水库水体真菌种群结构垂向演替特征,采集金盆水库主库区0.5、10、25、40、60和70 m水深水样,分析水质参数、并运用高通量DNA测序技术诊断水库水体真菌种群结构垂向异质性.结果表明,金盆水库表层水温最高为22.33℃,底层最低为7.21℃(P0.05).水体溶解氧(DO)随水深增加显著降低(P0.05),电导率、总磷(TP)和铁含量随着水深增加显著升高(P0.05),垂向形成稳定的变温层、斜温层和等温层结构.水体真菌种群高通量DNA测序共发现1 247个OTUs,隶属4门14纲39属,主要包括接合菌门(Zygomycota)、担子菌门(Basidiomycota)、子囊菌门(Ascomycota)和壶菌门(Chytridiomycota).等温层水体真菌种群Shannon指数和Chao 1多样性指数最高,分别为3.45和360,显著高于斜温层水体(P0.05).红酵母属(Rhodotorula,27.23%)、链格孢属(Alternaria,24.28%)、分子孢子菌属(Cladosporium,22.98%)、链格孢属(Alternaria,32.00%)、亚隔孢壳属(Didymella,17.47%)和分子孢子菌属(Cladosporium,28.17%)分别是0.5、10、25、40、60、70 m的优势菌属,不同水深均存在大量未知真菌(Unclassified).热图(heat map)结果表明,热分层期间金盆水库水体真菌种群结构垂向分布差异显著、不同水层具有不同的真菌种群结构.主成分分析(PCA)表明水温、DO、TP、电导率是调控水体真菌种群结构垂向异质性的主要水质因子.该研究结果为水源水库热分层期间水质与真菌群落的偶联机制提供科学依据. 相似文献
232.
火电建设面临的环保形势与任务分析 总被引:8,自引:2,他引:8
从国家投资体制改革、主要产业政策、火电项目厂址选择要求、污染治理法规及标准要求等方面简述了火电建设面临的环保形势.依据国民经济的发展要求,预测了电力的建设需要和目前的在建规模,指出由于违规电站的开工,导致目前电力在建规模偏大的问题,国家需以科学发展观为指导,加强宏观调控力度.以火电SO2污染控制为例,分析了火电建设面临的环保任务以及排污权交易可能产生的经济效应. 相似文献
233.
为探究热工艺过程产生的热气流作用下颗粒的迁移规律,基于气固两相离散粒子模型(DPM)对多源浮射流伴生的高温颗粒的扩散特性进行了数值研究,讨论了两相流运动过程中热气流与颗粒群的温度和速度的瞬时变化情况.结果表明,对于473K£T0£673K的高温颗粒群,温度衰减趋势类似,颗粒群温度分布呈中心对称;当5μm£dp£20μm时,颗粒与气流之间的跟随性随着粒径的增大而降低;热羽流随时间经历了独立发展和相互合并的过程,羽流之间涡旋结构的消失导致中心位污染源散发的dp=10μm的颗粒更容易发生沉降. 相似文献
234.
为了解外源钙对缓解沙拐枣(Calligonum mongolicum)盐胁迫的主要生理机制,采用盆栽法探究在0、100、200 mmol/L的NaCl胁迫下,分别添加5、10、15和20 mmol/L的Ca(NO3)2对沙拐枣同化枝中w(脯氨酸)、丙二醛含量、w(可溶性蛋白)、w(可溶性糖)的影响.结果表明,单独添加Ca(NO3)2使沙拐枣同化枝内w(脯氨酸)、丙二醛含量、w(可溶性蛋白)以及w(可溶性糖)增加,即Ca(NO3)2对沙拐枣的生长造成了胁迫.对w(脯氨酸)、丙二醛含量、w(可溶性蛋白)、w(可溶性糖)来说,NaCl和Ca(NO3)2之间均存在极显著的交互作用,与对照相比,在c(NaCl)分别为100、200 mmol/L,添加c[Ca(NO3)2]为10、20 mmol/L时,w(脯氨酸)显著增加,分别达到最大值(736.7、1 086.3 μg/g);丙二醛含量分别降低了37.8%和40.5%,w(可溶性蛋白)以及w(可溶性糖)均增加.总之,适宜浓度的钙盐通过增加渗透物质w(脯氨酸)、w(可溶性蛋白)及w(可溶性糖),降低丙二醛的含量来有效缓解盐胁迫对沙拐枣幼苗产生的伤害,当c(NaCl)/c[Ca(NO3)2]为10:1时,缓解作用最佳,并且钙盐对沙拐枣盐胁迫的缓解属于抗性诱导的调节作用. 相似文献
235.
不同磁黄铁矿自养反硝化脱氮除磷作用 总被引:1,自引:0,他引:1
氮磷排放标准日趋严格,开发高效廉价脱氮除磷材料已成为研究热点.采用黄铁矿与赤铁矿在管式炉中氮气气氛下600 ℃煅烧,得到硫化赤铁矿形成的磁黄铁矿、黄铁矿热分解形成的磁黄铁矿,构建磁黄铁矿-方解石体系处理含氮磷模拟废水,对比不同方式制备的磁黄铁矿、天然磁黄铁矿、黄铁矿、硫磺脱氮除磷性能,考察不同磁黄铁矿晶体结构和结晶度差异及其对脱氮除磷影响,探究不同体系中矿物结构和微生物群落变化.结果表明:黄铁矿热分解产物以六方磁黄铁矿为主;硫化赤铁矿产物以低结晶度的单斜磁黄铁矿为主,因而表现出优异的脱氮除磷活性,氮磷去除率分别为99.8%和96.8%.铁硫化物与微生物反应产物的XRD、SEM和FE-TEM分析结果表明,微生物能有效利用磁黄铁矿进行脱氮,磷酸盐主要以FePO4形式被去除.群落分析结果表明铁硫化物脱氮除磷体系中的主要功能菌属为Thiobacillus和 Sulfurimonas,结晶度低的单斜磁黄铁矿更有利于Thiobacillus定向富集. 相似文献
236.
Schröder P Scheer CE Diekmann F Stampfl A 《Environmental science and pollution research international》2007,14(2):114-122
Background, Aim and Scope
Numerous herbicides and xenobiotic organic pollutants are detoxified in plants to glutathione conjugates. Following this enzyme
catalyzed reaction, xenobiotic GS-conjugates are thought to be compartmentalized in the vacuole of plant cells. In the present
study, evidence is presented for long range transport of these conjugates in plants, rather than storage in the vacuole. To
our knowledge this is the first report about the unidirectional long range transport of xenobiotic conjugates in plants and
the exudation of a glutathione conjugate from the root tips. This could mean that plants possess an excretion system for unwanted
compounds which give them similar advantages as animals.
Materials and Methods:
Barley plants (Hordeum vulgare L. cv. Cherie) were grown in Petri dishes soaked with tap water in the greenhouse.
- Fluorescence Microscopy. Monobromo- and Monochlorobimane, two model xenobiotics that are conjugated rapidly in plant cells
with glutathione, hereby forming fluorescent metabolites, were used as markers for our experiments. Their transport in the
root could be followed sensitively with very good temporal and spatial resolution. Roots of barley seedlings were cut under
water and the end at which xenobiotics were applied was fixed in an aperture with a thin latex foil and transferred into a
drop of water on a cover slide. The cover slide was fixed in a measuring chamber on the stage of an inverse fluorescence microscope
(Zeiss Axiovert 100).
- Spectrometric enzyme assay. Glutathione S-transferase (GST) activity was determined in the protein extracts following established
methods. Aliquots of the enzyme extract were incubated with 1-chloro-2,4-dinitrobenzene (CDNB), or monochlorobimane. Controls
lacking enzyme or GSH were measured.
- Pitman chamber experiments. Ten days old barley plants or detached roots were inserted into special incubation chambers, either
complete with tips or decapitated, as well as 10 days old barley plants without root tips. Compartment A was filled with a
transport medium and GSH conjugate or L-cysteine conjugate. Compartments B and C contained sugar free media. Samples were
taken from the root tip containing compartment C and the amount of conjugate transported was determined spectro-photometrically.
Results:
The transport in roots is unidirectional towards the root tips and leads to exsudation of the conjugates at rates between
20 and 200 nmol min-1. The microscopic studies have been complemented by transport studies in small root chambers and spectroscopic
quantification of dinitrobenzene-conjugates. The latter experiments confirm the microscopic studies. Furthermore it was shown
that glutathione conjugates are transported at higher rates than cysteine conjugates, despite of their higher molecular weights.
This observation points to the existence of glutathione specific carriers and a specific role of glutathione in the root.
Discussion:
It can be assumed that long distance transport of glutathione conjugates within the plant proceeds like GSH or amino acid
transport in both, phloem and xylem. The high velocity of this translocation of the GS-X is indicative of an active transport.
For free glutathione, a rapid transport-system is essential because an accumulation of GSH in the root tip inhibits further
uptake of sulfur. Taking into account that all described MRP transporters and also the GSH plasmalemma ATPases have side activities
for glutathione derivatives and conjugates, co-transport of these xenobiotic metabolites seems credible.
- On the other hand, when GS-B was applied to the root tips from the outside, no significant uptake was observed. Thus it can
be concluded that only those conjugates can be transported in the xylem which are formed inside the root apex. Having left
the root once, there seems to be no return into the root vessels, probably because of a lack of inward directed transporters.
Conclusions:
Plants seem to possess the capability to store glutathione conjugates in the vacuole, but under certain conditions, these
metabolites might also undergo long range transport, predominantly into the plant root. The transport seems dependent on specific
carriers and is unidirectional, this means that xenobiotic conjugates from the rhizosphere are not taken up again. The exudation
of xenobiotic metabolites offers an opportunity to avoid the accumulation of such compounds in the plant.
Recommendations and Perspectives:
The role of glutathione and glutathione related metabolites in the rhizosphere has not been studied in any detail, and only
scattered data are available on interactions between the plant root and rhizosphere bacteria that encounter such conjugates.
The final fate of these compounds in the root zone has also not been addressed so far. It will be interesting to study effects
of the exuded metabolites on the biology of rhizosphere bacteria and fungi. 相似文献
237.
Triclosan is used as an antibacterial agent in household items and personal care products. Since this compound is found in maternal milk of humans and bodies of wild animals, there is growing concern among some consumer groups and scientific community that triclosan is adverse for humans and wild animals. In order to estimate adverse actions of triclosan, the effects of triclosan on intracellular Zn2+ concentration and cellular thiol content were studied in rat thymocytes by the use of flow cytometer with appropriate fluorescent probes. Triclosan at 1-3 μM (sublethal concentrations) increased the intensity of FluoZin-3 fluorescence (intracellular Zn2+ concentration) and decreased the intensity of 5-chloromethylfluorescein (5-CMF) fluorescence (cellular thiol content). Negative correlation (r = −0.985) between triclosan-induced changes in FluoZin-3 and 5-CMF fluorescences was found. Removal of external Zn2+ did not significantly affect the triclosan-induced augmentation of FluoZin-3 fluorescence, suggesting an intracellular Zn2+ release by triclosan. These actions of triclosan were similar to those of H2O2 and triclosan significantly potentiated the cytotoxicity of H2O2. Therefore, the results may suggest that triclosan at sublethal concentrations induces oxidative stress that decreases cellular thiol content, resulting in an increase in intracellular Zn2+ concentration by Zn2+ release from intracellular store(s). Since recent studies show many physiological roles of intracellular Zn2+ in cellular functions, the triclosan-induced disturbance of cellular Zn2+ homeostasis may induce adverse actions on the cells. 相似文献
238.
Effect of humic acids on physicochemical property and Cd(II) sorption of multiwalled carbon nanotubes 总被引:1,自引:0,他引:1
Zinc pyrithione is used as an antifouling agent. However, the environmental impacts of zinc pyrithione have recently been of concern. Zinc induces diverse actions during oxidative stress; therefore, we examined the effect of zinc pyrithione on rat thymocytes suffering from oxidative stress using appropriate fluorescent probes. The cytotoxicity of zinc pyrithione was not observed when the cells were incubated with 3 μM zinc pyrithione for 3 h. However, zinc pyrithione at nanomolar concentrations (10 nM or more) significantly increased the lethality of cells suffering from oxidative stress induced by 3 mM H2O2. The application of zinc pyrithione alone at nanomolar concentrations increased intracellular Zn2+ level and the cellular content of superoxide anions, and decreased the cellular content of nonprotein thiols. The simultaneous application of nanomolar zinc pyrithione and micromolar H2O2 synergistically increased the intracellular Zn2+ level. Therefore, zinc pyrithione at nanomolar concentrations may exert severe cytotoxic action on cells simultaneously exposed to chemicals that induce oxidative stress. If so, zinc pyrithione leaked from antifouling materials into surrounding environments would be a risk factor for aquatic ecosystems. Alternatively, zinc pyrithione under conditions of oxidative stress may become more potent antifouling ingredient. 相似文献
239.
The effects of Atrazine, an herbicide used worldwide and considered as a potential contaminant in aquatic environments, were assessed on the Neotropical fish Prochilodus lineatus acutely (24 and 48 h) exposed to 2 or 10 μg L−1 of atrazine by using a set of biochemical and genetic biomarkers. The following parameters were measured in the liver: activity of the biotransformation enzymes ethoxyresorufin-O-deethylase (EROD) and glutathione S transferase (GST), antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), content of reduced glutathione (GSH), generation of reactive oxygen species (ROS) and occurrence of lipid peroxidation (LPO); in brain and muscle the activity of acetylcholinesterase (AChE) and DNA damage (comet assay) on erythrocytes, gills and liver cells. A general decreasing trend on the biotransformation and antioxidant enzymes was observed in the liver of P. lineatus exposed to atrazine; except for GR, all the other antioxidant enzymes (SOD, CAT and GPx) and biotransformation enzymes (EROD and GST) showed inhibited activity. Changes in muscle or brain AChE were not detected. DNA damage was observed in the different cell types of fish exposed to the herbicide, and it was probably not from oxidative origin, since no increase in ROS generation and LPO was detected in the liver. These results show that atrazine behaves as enzyme inhibitor, impairing hepatic metabolism, and produces genotoxic damage to different cell types of P. lineatus. 相似文献
240.
Tim S. Nawrot Nino Kuenzli Jordi Sunyer Tingming Shi Teresa Moreno Mar Viana Joachim Heinrich Bertil Forsberg Frank J. Kelly Muhammad Sughis Benoit Nemery Paul Borm 《Atmospheric environment (Oxford, England : 1994)》2009,43(30):4595-4602
We assessed the extent to which constituents of PM2.5 (transition metals, sodium, chloride) contribute to the ability to generate hydroxyl radicals (OH) in vitro in PM2.5 sampled at 20 locations in 19 European centres participating in the European Community Respiratory Health Survey. PM2.5 samples (n = 716) were collected on filters over one year and the oxidative activity of particle suspensions obtained from these filters was then assessed by measuring their ability to generate OH in the presence of hydrogen peroxide. Associations between OH formation and the studied PM constituents were heterogeneous. The total explained variance ranged from 85% in Norwich to only 6% in Albacete. Among the 20 centres, 15 showed positive correlations between one or more of the measured transition metals (copper, iron, manganese, lead, vanadium and titanium) and OH formation. In 9 of 20 centres OH formation was negatively associated with chloride, and in 3 centres with sodium. Across 19 European cities, elements which explained the largest variations in OH formation were chloride, iron and sodium. 相似文献