首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   5篇
  国内免费   3篇
安全科学   10篇
环保管理   4篇
综合类   10篇
基础理论   36篇
评价与监测   1篇
社会与环境   3篇
灾害及防治   2篇
  2023年   4篇
  2022年   1篇
  2021年   1篇
  2020年   4篇
  2019年   3篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   2篇
  2012年   4篇
  2011年   7篇
  2010年   4篇
  2009年   7篇
  2008年   5篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
排序方式: 共有66条查询结果,搜索用时 343 毫秒
51.
Understanding threats acting on marine organisms and their conservation status is vital but challenging given a paucity of data. We studied the cumulative human impact (CHI) on and conservation status of seahorses (Hippocampus spp.)—a genus of rare and data-poor marine fishes. With expert knowledge and relevant spatial data sets, we built linear-additive models to assess and map the CHI of 12 anthropogenic stressors on 42 seahorse species. We examined the utility of indices of estimated impact (impact of each stressor and CHI) in predicting conservation status for species with random forest (RF) models. The CHI values for threatened species were significantly higher than those for nonthreatened species (category based on International Union for Conservation of Nature Red List). We derived high-accuracy RF models (87% and 96%) that predicted that 5 of the 17 data-deficient species were threatened. Demersal fishing practices with high bycatch and pollution were the best predictors of threat category. Major threat epicenters were in China, Southeast Asia, and Europe. Our results and maps of CHI may help guide global seahorse conservation and indicate that modeling and mapping human impacts can reveal threat patterns and conservation status for data-poor species. We found that for exploring threat patterns of focal species, species-level CHI models are better than existing ecosystem-level CHI models.  相似文献   
52.
Phylogenetic analysis of extinction threat is an emerging tool in the field of conservation. However, there are problems with the methods and data as commonly used. Phylogenetic sampling usually extends to the level of family or genus, but International Union for Conservation of Nature (IUCN) rankings are available only for individual species, and, although different species within a taxonomic group may have the same IUCN rank, the species may have been ranked as such for different reasons. Therefore, IUCN rank may not reflect evolutionary history and thus may not be appropriate for use in a phylogenetic context. To be used appropriately, threat‐risk data should reflect the cause of extinction threat rather than the IUCN threat ranking. In a case study of the toad genus Incilius, with phylogenetic sampling at the species level (so that the resolution of the phylogeny matches character data from the IUCN Red List), we analyzed causes of decline and IUCN threat rankings by calculating metrics of phylogenetic signal (such as Fritz and Purvis’ D). We also analyzed the extent to which cause of decline and threat ranking overlap by calculating phylogenetic correlation between these 2 types of character data. Incilius species varied greatly in both threat ranking and cause of decline; this variability would be lost at a coarser taxonomic resolution. We found far more phylogenetic signal, likely correlated with evolutionary history, for causes of decline than for IUCN threat ranking. Individual causes of decline and IUCN threat rankings were largely uncorrelated on the phylogeny. Our results demonstrate the importance of character selection and taxonomic resolution when extinction threat is analyzed in a phylogenetic context.  相似文献   
53.
A critical decision in species conservation is whether to target individual species or a complex of ecologically similar species. Management of multispecies complexes is likely to be most effective when species share similar distributions, threats, and response to threats. We used niche overlap analysis to assess ecological similarity of 3 sensitive desert fish species currently managed as an ecological complex. We measured the amount of shared distribution of multiple habitat and life history parameters between each pair of species. Habitat use and multiple life history parameters, including maximum body length, spawning temperature, and longevity, differed significantly among the 3 species. The differences in habitat use and life history parameters among the species suggest they are likely to respond differently to similar threats and that most management actions will not benefit all 3 species equally. Habitat restoration, frequency of stream dewatering, non‐native species control, and management efforts in tributaries versus main stem rivers are all likely to impact each of the species differently. Our results demonstrate that niche overlap analysis provides a powerful tool for assessing the likely effectiveness of multispecies versus single‐species conservation plans. Evaluación de la Posible Efectividad del Manejo Multi‐Especie paraPeces de Desierto en Peligro Mediante el Análisis de Traslape de Nichos  相似文献   
54.
滇金丝猴栖息地生物多样性及其威胁因素研究   总被引:1,自引:0,他引:1  
滇金丝猴栖息地是我国生物多样性保护关键区域之一,具有生态系统多样性、物种多样性、遗传多样性等特点。分析了滇金丝猴栖息地目前受到的威胁,提出了今后保护管理的意见。  相似文献   
55.
In order to assess the potential of As and heavy metal contamination derived from past mining activity and to estimate the human bioavailability quotients for As and heavy metals. Tailings, soils and crop samples were collected and analysed for As, Cd, Cu, Pb and Zn. The mean concentrations of As, Cd, Cu, Pb and Zn in the tailings were 68.5, 7.8, 99, 3,754 and 733 µg g–1, respectively. Maximum Pb concentration in tailings was up to 90 times higher than its tolerable level. The concentrations of these metals were highest in the soils from the dressing plant area, and decreased in the order: farmland soil to paddy soil. In particular, some of the soils from the dressing plant area contained more than 1% of Pb and Zn. The pollution index ranged from 0.19 to 1.93 in paddy soils, and from 1.47 to 3.60 in farmland soils. The average concentrations of heavy metals in crops collected from farmland were higher than those in rice stalks or rice grains, and higher than the internationally accepted limits for vegetables. Element concentrations extracted from farmland soils within the simulated human stomach for 1 h are 9.4 mg kg–1 As, 3.8 mg kg–1 Cd, 37 mg kg–1 Cu, 250 mg kg–1 Pb and 301 mg kg–1 Zn. In particular, the extracted concentrations of Cd, Pb and Zn are in excess of the tolerable levels. The results of the simple bioavailability extraction test (SBET) indicate that regular ingestion (by inhalation and from dirty hands) of soils by the local population could pose a potential health threat due to long-term toxic element exposure.  相似文献   
56.
Abstract:  Marine ecosystems are threatened by a suite of anthropogenic stressors. Mitigating multiple threats is a daunting task, particularly when funding constraints limit the number of threats that can be addressed. Threats are typically assessed and prioritized via expert opinion workshops that often leave no record of the rationale for decisions, making it difficult to update recommendations with new information. We devised a transparent, repeatable, and modifiable method for collecting expert opinion that describes and documents how threats affect marine ecosystems. Experts were asked to assess the functional impact, scale, and frequency of a threat to an ecosystem; the resistance and recovery time of an ecosystem to a threat; and the certainty of these estimates. To quantify impacts of 38 distinct anthropogenic threats on 23 marine ecosystems, we surveyed 135 experts from 19 different countries. Survey results showed that all ecosystems are threatened by at least nine threats and that nine ecosystems are threatened by > 90% of existing threats. The greatest threats (highest impact scores) were increasing sea temperature, demersal destructive fishing, and point-source organic pollution. Rocky reef, coral reef, hard-shelf, mangrove, and offshore epipelagic ecosystems were identified as the most threatened. These general results, however, may be partly influenced by the specific expertise and geography of respondents, and should be interpreted with caution. This approach to threat analysis can identify the greatest threats (globally or locally), most widespread threats, most (or least) sensitive ecosystems, most (or least) threatened ecosystems, and other metrics of conservation value. Additionally, it can be easily modified, updated as new data become available, and scaled to local or regional settings, which would facilitate informed and transparent conservation priority setting.  相似文献   
57.
Abstract:  The ability to predict which areas of conservation importance are most vulnerable to transformation and to rank the relative damage that transforming land uses could cause to biodiversity are important components of an effective and realistic conservation planning process. We used the South African grassland biome as a case study to illustrate the assessment of vulnerability to land-use transformation through the construction of a "threat map." We identified the dominant transforming land uses and created suitability models based on area appropriateness for each. Land uses were scored according to their expected relative impacts on biodiversity, with a framework that included compositional, structural, and functional components. This information, once combined, resulted in a map that highlighted the areas most vulnerable to transformation in terms of the likelihood of their transformation and the impact on their biodiversity. We propose that such an analysis of the threat of transformation, in combination with species-representation approaches, will aid the integration of conservation planning theory and decision making. This approach can be applied at any scale and in any region with a robustness and accuracy dependent on data quality, resultant suitability models, and comprehension of how land uses affect an area's biodiversity.  相似文献   
58.
Abstract:  Many different systems are used to assess levels of threat faced by species. Prominent ones are those used by the World Conservation Union, NatureServe, and the Florida Game and Freshwater Fish Commission (now the Florida Fish and Wildlife Conservation Commission). These systems assign taxa a threat ranking by assessing their demographic and ecological characteristics. These threat rankings support the legislative protection of species and guide the placement of conservation programs in order of priority. It is not known, however, whether these assessment systems rank species in a similar order. To resolve this issue, we assessed 55 mainly vertebrate taxa with widely differing life histories under each of these systems and determined the rank correlations among them. Moderate, significant positive correlations were seen among the threat rankings provided by the three systems (correlations 0.58–0.69). Further, the threat rankings for taxa obtained using these systems were significantly correlated to their rankings based on predicted probability of extinction within 100 years as determined by population viability analysis (correlations 0.28–0.37). The different categorization systems, then, yield related but not identical threat rankings, and these rankings are associated with predicted extinction risk.  相似文献   
59.
为考核CCAR141飞行学校多人制机组驾驶员执照(Multi-crew Pilot License,MPL)训练效果,对其核心单元——威胁与差错管理(Threat and Error Management,TEM)能力进行评估.在分析ANP原理和模糊综合评价方法的基础上,结合ICAO的PANS-TRG文件,建立了面向MPL培训的TEM能力评估指标体系和能够精确界定定性指标的Fuzzy多层次评价结构.采用ANP-Fuzzy方法对CCARI41飞行学校C的MPL学生TEM能力进行评估.结果表明,威胁管理比差错管理、非预期状态管理对MPL学生TEM能力的影响大,同时,该方法能够有效区分学生自身不同方面及不同学生间的管理能力差异.此外,借助Super Decisions软件也可用于其他训练单元的效果评估.  相似文献   
60.
为准确理解民航空中交通管理中各类人为差错数据的可靠性和相关性,为安全决策提供量化依据,对空管威胁、差错和意外状态数据进行贝叶斯模型分析。该方法在先验概率基础上,通过研究空中意外状态发生条件下威胁与差错各自发生的后验概率,获得上述3类安全信息的相关性大小排序。针对收集到的625起数据样本进行了研究,结果表明:与空中意外状态的发生相关性最大的3类差错依次为:管制员对机组的通讯差错、信息差错以及管制员对管制员的通讯差错;与空中意外状态的发生相关性最大的3类威胁依次为:程序威胁、相邻单位威胁和空中交通威胁。空管运行单位的安全管控应重点关注管制员/机组间的通讯差错,并针对各种可能出现的威胁预先制定应对程序。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号