首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   322篇
  免费   109篇
  国内免费   1篇
环保管理   2篇
综合类   3篇
基础理论   423篇
评价与监测   2篇
灾害及防治   2篇
  2024年   28篇
  2023年   29篇
  2022年   30篇
  2021年   42篇
  2020年   24篇
  2019年   18篇
  2018年   21篇
  2017年   33篇
  2016年   24篇
  2015年   33篇
  2014年   24篇
  2013年   31篇
  2012年   24篇
  2011年   25篇
  2010年   21篇
  2009年   8篇
  2008年   12篇
  2006年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1985年   1篇
排序方式: 共有432条查询结果,搜索用时 0 毫秒
341.
Abstract: To understand how a highly contentious policy process influenced a major conservation effort, I examined the origins, compromises, and outcomes of the Alaska National Interest Lands Conservation Act of 1980 (ANILCA) for the Tongass National Forest. Tongass wilderness designation was among the most controversial issues in the ANILCA debate, and it faced strong opposition from influential lawmakers, land managers, and Alaska residents. To investigate the influence of this opposition on Tongass conservation outcomes, I conducted a gap analysis of Tongass reserves and a policy analysis of the ANILCA debate and traced the influence of specific interests through the amendments, negotiations, and resulting compromises needed to enact ANILCA. Overall, I found that Tongass reserves comprise a broadly representative cross‐section of ecosystems and species habitats in southeastern Alaska. Redrawn reserve boundaries, industry subsidies, and special access regulations reflected compromises to minimize the impact of wilderness conservation on mining, timber, and local stakeholder interests, respectively. Fragmentation of the Admiralty Island National Monument—the most ecologically valuable and politically controversial reserve—resulted from compromises with Alaskan Native (indigenous peoples of Alaska) corporations and timber interests. Despite language to accommodate “reasonable access” to wilderness reserves, ongoing access limitations highlight the concerns of Alaska residents that opposed ANILCA several decades ago. More broadly, the Tongass case suggests that early and ambitious conservation action may offset strong political opposition; compromises needed to establish key reserves often exacerbate development impacts in unprotected areas; and efforts to minimize social conflicts are needed to safeguard the long‐term viability of conservation measures.  相似文献   
342.
         下载免费PDF全文
The term critical habitat is used to describe the subset of habitat that is essential to the survival and recovery of species. Some countries legally require that critical habitat of listed threatened and endangered species be identified and protected. However, there is little evidence to suggest that the identification of critical habitat has had much impact on species recovery. We hypothesized that this may be due at least partly to a mismatch between the intent of critical habitat identification, which is to protect sufficient habitat for species persistence and recovery, and its practice. We used content analysis to systematically review critical habitat documents from the United States, Canada, and Australia. In particular, we identified the major trends in type of information used to identify critical habitat and in occupancy of habitat identified as critical. Information about population viability was used to identify critical habitat for only 1% of the species reviewed, and for most species, designated critical habitat did not include unoccupied habitat. Without reference to population viability, it is difficult to determine how much of a species’ occupied and unoccupied habitat will be required for persistence. We therefore conclude that the identification of critical habitat remains inconsistent with the goal of protecting sufficient habitat to support persistence and recovery of the species. Ensuring that critical habitat identification aligns more closely with its intent will improve the accuracy of the designations and may therefore help improve the benefits to species recovery when combined with adequate implementation and enforcement of legal protections.  相似文献   
343.
         下载免费PDF全文
Population abundance estimates are important for management but can be challenging to determine in low‐density, wide‐ranging, and endangered species, such as Sonoran pronghorn (Antilocapra americana sonoriensis). The Sonoran pronghorn population has been increasing; however, population estimates are currently derived from a biennial aerial count that does not provide survival or recruitment estimates. We identified individuals through noninvasively collected fecal DNA and used robust‐design capture–recapture to estimate abundance and survival for Sonoran pronghorn in the United States from 2013 to 2014. In 2014 we generated separate population estimates for pronghorn gathered near 13 different artificial water holes and for pronghorn not near water holes. The population using artificial water holes had 116 (95% CI 102–131) and 121 individuals (95% CI 112–132) in 2013 and 2014, respectively. For all locations, we estimated there were 144 individuals (95% CI 132–157). Adults had higher annual survival probabilities (0.83, 95% CI 0.69–0.92) than fawns (0.41, 95% CI 0.21–0.65). Our use of targeted noninvasive genetic sampling and capture–recapture with Sonoran pronghorn fecal DNA was an effective method for monitoring a large proportion of the population. Our results provided the first survival estimates for this population in over 2 decades and precise estimates of the population using artificial water holes. Our method could be used for targeted sampling of broadly distributed species in other systems, such as in African savanna ecosystems, where many species congregate at watering sites.  相似文献   
344.
    
Sea-level rise (SLR) is expected to cause major changes to coastal wetlands, which are among the world's most vulnerable ecosystems and are critical for nonbreeding waterbirds. Because strategies for adaptation to SLR, such as nature-based solutions and designation of protected areas, can locally reduce the negative effects of coastal flooding under SLR on coastal wetlands, it is crucial to prioritize adaptation efforts, especially for wetlands of international importance for biodiversity. We assessed the exposure of coastal wetlands important for nonbreeding waterbirds to projected SLR along the Mediterranean coasts of 8 countries by modeling future coastal flooding under 7 scenarios of SLR by 2100 (from 44- to 161-cm rise) with a static inundation approach. Exposure to coastal flooding under future SLR was assessed for 938 Mediterranean coastal sites (≤30 km from the coastline) where 145 species of nonbreeding birds were monitored as part of the International Waterbird Census and for which the monitoring area was delineated by a polygon (64.3% of the coastal sites monitored in the Mediterranean region). Thirty-four percent of sites were threatened by future SLR, even under the most optimistic scenarios. Protected study sites and study sites of international importance for waterbirds were, respectively, 1.5 and 2 times more exposed to SLR than the other sites under the most optimistic scenario. Accordingly, we advocate for the development of a prioritization scheme to be applied to these wetlands for the implementation of strategies for adaptation to SLR to anticipate the effects of coastal flooding. Our study provides major guidance for conservation planning under global change in several countries of the Mediterranean region.  相似文献   
345.
Abstract: Spatial and temporal dynamics of ecological processes have long been considered important in marine systems, but seldom have conservation objectives been set for them. Climate change makes the consideration of the dynamics of ecological processes in the design of marine protected areas critical. We analyzed sea‐surface temperature (SST) trends and variability in Great Barrier Reef Marine Park (GBRMP) for 25 years and formulated and tested whether three sets of notional conservation objectives were met to illustrate the potential for planning to address climate change. Given mixed and limited evidence that no‐take areas increase resilience to disturbances such as anomalously high temperatures (i.e., temperatures ≥1 °C above weekly mean temperature), our conservation objectives focused on areas less likely to be affected by such events at extents ranging from the entire Great Barrier Reef to the system of no‐take zones and individual no‐take zones. The objective sets were (1) at least 50% of temperature refugia (i.e., pixels that had high‐temperature anomalies <5% or <7% of the time) within no‐take zones, (2) maximum occurrence of high‐temperature anomalies is <10%,< 20%, or <30% of total no‐take area 90% of the time, and (3) coverage of any single no‐take zone by high‐temperature anomalies occurs <5% or <10% of the time. We used satellite imagery from 1985–2009 to measure SST to determine high‐temperature anomalies. SSTs in the Great Barrier Reef increased significantly in some regions, and some of the conservation objectives were met by the park's current zoning plan. Dialogue between conservation scientists and managers is needed to develop appropriate conservation objectives under climate change and strategies to meet them.  相似文献   
346.
The global biodiversity crisis requires an engaged citizenry that provides collective support for public policies and recognizes the consequences of personal consumption decisions. Understanding the factors that affect personal engagement in proenvironmental behaviors is essential for the development of actionable conservation solutions. Zoos and aquariums may be some of the only places where many people can explore their relations with wild animals and proenvironmental behaviors. Using a moderated‐mediation analysis of a survey of U.S. zoo and aquarium visitors (n = 3588), we explored the relationship between the sense of connection to animals and self‐reported engagement in proenvironmental behaviors related to climate change and how this relationship is affected by certainty that climate change is happening, level of concern about climate change, and perceptions of effectiveness in personally addressing climate change. We found a significant, directional relationship between sense of connection to animals and self‐reported proenvironmental behaviors. Political inclination within the conservative to liberal spectrum did not affect the relationship. We conclude that a personal sense of connection to animals may provide a foundation for educational and communication strategies to enhance involvement in proenvironmental actions.  相似文献   
347.
为了研究电力系统全数字实时仿真装置(Advanced Digital Power System Simulator,ADPSS)在宁夏电网控制保护装置入网检测方面的应用效果,以2套典型线路保护为检测样例,搭建系统模型进行仿真后,通过外接物理接口与保护装置连接,从而检验其动作特性。测试结果显示2套线路保护在所有类型的模拟故障中均动作合格。结果表明:利用ADPSS进行的控制保护装置检测试验,仿真度高、实时性强,可为装置入网提供可靠的试验依据,为系统的安全稳定运行提供良好的技术保障。  相似文献   
348.
Abstract: Wildflower harvesting is an economically important activity of which the ecological effects are poorly understood. We assessed how harvesting of flowers affects shrub persistence and abundance at multiple spatial extents. To this end, we built a process‐based model to examine the mean persistence and abundance of wild shrubs whose flowers are subject to harvest (serotinous Proteaceae in the South African Cape Floristic Region). First, we conducted a general sensitivity analysis of how harvesting affects persistence and abundance at nested spatial extents. For most spatial extents and combinations of demographic parameters, persistence and abundance of flowering shrubs decreased abruptly once harvesting rate exceeded a certain threshold. At larger extents, metapopulations supported higher harvesting rates before their persistence and abundance decreased, but persistence and abundance also decreased more abruptly due to harvesting than at smaller extents. This threshold rate of harvest varied with species’ dispersal ability, maximum reproductive rate, adult mortality, probability of extirpation or local extinction, strength of Allee effects, and carrying capacity. Moreover, spatial extent interacted with Allee effects and probability of extirpation because both these demographic properties affected the response of local populations to harvesting more strongly than they affected the response of metapopulations. Subsequently, we simulated the effects of harvesting on three Cape Floristic Region Proteaceae species and found that these species reacted differently to harvesting, but their persistence and abundance decreased at low rates of harvest. Our estimates of harvesting rates at maximum sustainable yield differed from those of previous investigations, perhaps because researchers used different estimates of demographic parameters, models of population dynamics, and spatial extent than we did. Good demographic knowledge and careful identification of the spatial extent of interest increases confidence in assessments and monitoring of the effects of harvesting. Our general sensitivity analysis improved understanding of harvesting effects on metapopulation dynamics and allowed qualitative assessment of the probability of extirpation of poorly studied species.  相似文献   
349.
    
Globally, marine fish communities are being altered by climate change and human disturbances. We examined data on global marine fish communities to assess changes in community-weighted mean temperature affinity (i.e., mean temperatures within geographic ranges), maximum length, and trophic levels, which, respectively, represent the physiological, morphological, and trophic characteristics of marine fish communities. Then, we explored the influence of climate change and fishing on these characteristics because of their long-term role in shaping fish communities, especially their interactive effects. We employed spatial linear mixed models to investigate their impacts on community-weighted mean trait values and on abundance of different fish lengths and trophic groups. Globally, we observed an initial increasing trend in the temperature affinity of marine fish communities, whereas the weighted mean length and trophic levels of fish communities showed a declining trend. However, these shift trends were not significant, likely due to the large variation in midlatitude communities. Fishing pressure increased fish communities’ temperature affinity in regions experiencing climate warming. Furthermore, climate warming was associated with an increase in weighted mean length and trophic levels of fish communities. Low climate baseline temperature appeared to mitigate the effect of climate warming on temperature affinity and trophic levels. The effect of climate warming on the relative abundance of different trophic classes and size classes both exhibited a nonlinear pattern. The small and relatively large fish species may benefit from climate warming, whereas the medium and largest size groups may be disadvantaged. Our results highlight the urgency of establishing stepping-stone marine protected areas to facilitate the migration of fishes to habitats in a warming ocean. Moreover, reducing human disturbance is crucial to mitigate rapid tropicalization, particularly in vulnerable temperate regions.  相似文献   
350.
    
The continued loss of freshwater habitats poses a significant threat to global biodiversity. We reviewed the extinction risk of 166 freshwater aquatic and semiaquatic mammals—a group rarely documented as a collective. We used the International Union for the Conservation of Nature Red List of Threatened Species categories as of December 2021 to determine extinction risk. Extinction risk was then compared among taxonomic groups, geographic areas, and biological traits. Thirty percent of all freshwater mammals were listed as threatened. Decreasing population trends were common (44.0%), including a greater rate of decline (3.6% in 20 years) than for mammals or freshwater species as a whole. Aquatic freshwater mammals were at a greater risk of extinction than semiaquatic freshwater mammals (95% CI –7.20 to –1.11). Twenty-nine species were data deficient or not evaluated. Large species (95% CI 0.01 to 0.03) with large dispersal distances (95% CI 0.03 to 0.15) had a higher risk of extinction than small species with small dispersal distances. The number of threatening processes associated with a species compounded their risk of extinction (95% CI 0.28 to 0.77). Hunting, land clearing for logging and agriculture, pollution, residential development, and habitat modification or destruction from dams and water management posed the greatest threats to these species. The basic life-history traits of many species were poorly known, highlighting the need for more research. Conservation of freshwater mammals requires a host of management actions centered around increased protection of riparian areas and more conscientious water management to aid the recovery of threatened species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号