全文获取类型
收费全文 | 80篇 |
免费 | 3篇 |
国内免费 | 23篇 |
专业分类
环保管理 | 15篇 |
综合类 | 37篇 |
基础理论 | 40篇 |
污染及防治 | 5篇 |
评价与监测 | 4篇 |
社会与环境 | 5篇 |
出版年
2024年 | 1篇 |
2023年 | 3篇 |
2022年 | 2篇 |
2021年 | 1篇 |
2020年 | 1篇 |
2018年 | 4篇 |
2017年 | 4篇 |
2016年 | 6篇 |
2015年 | 4篇 |
2014年 | 4篇 |
2013年 | 5篇 |
2012年 | 7篇 |
2011年 | 15篇 |
2010年 | 12篇 |
2009年 | 7篇 |
2008年 | 3篇 |
2007年 | 3篇 |
2006年 | 3篇 |
2005年 | 1篇 |
2004年 | 5篇 |
2002年 | 2篇 |
2001年 | 3篇 |
2000年 | 2篇 |
1999年 | 1篇 |
1997年 | 1篇 |
1994年 | 1篇 |
1992年 | 1篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1983年 | 1篇 |
1981年 | 1篇 |
排序方式: 共有106条查询结果,搜索用时 0 毫秒
101.
Uri ND 《Environmental monitoring and assessment》2001,70(3):323-344
Increase in the use of conservation practices byagriculture in the United States will enhance soilorganic carbon and potentially increase carbonsequestration. This, in turn, will decrease the netemission of carbon dioxide. A number of studies existthat calibrate the contribution of various individual,site-specific conservation practices on changes insoil organic carbon. There is a general absence,however, of a comprehensive effort to measureobjectively the contribution of these practicesincluding conservation tillage, the ConservationReserve Program, and conservation buffer strips to anchange in soil organic carbon. This paper fills thatvoid. After recounting the evolution of the use ofthe various conservation practices, it is estimatedthat organic carbon in the soil in 1998 in the UnitedStates attributable to these practices was about 12.2million metric tons. By 2008, there will be anincrease of about 25%. Given that there is asignificant potential for conservation practices tolead to an increase in carbon sequestration, there area number of policy options that can be pursued. 相似文献
102.
Saied Mostaghimi J. Michael Flagg Theo A. Dillaha Vernon O. Shanholtz 《Journal of the American Water Resources Association》1988,24(4):735-742
ABSTRACT: A rainfall simulator was used to study the effectiveness of no-till and fertilizer application method on reducing phosphorus (P) losses from agricultural lands. Simulated rainfall was applied to 12 experimental field plots, each 0.01 ha in size. The plots were divided into no-till and conventional tillage systems. Two fertilizer application methods, subsurface injection and surface application, were investigated for the two tillage systems. Phosphorus fertilizer was applied at a rate of 46 kg/ha, 24 to 48 hours before the start of rain simulation. Water samples were collected from the base of each plot and analyzed for sediment and P content. No-till was found to be very effective in reducing runoff and sediment losses. No-till reduced sediment loss and total runoff volume by 92 and 67 percent, respectively. Subsurface injection of fertilizer, as compared to surface application, reduced PO4 losses by 39 percent for no-till and by 35 percent for conventional tillage. The effect of tillage system on PO4 losses was not significant. Reductions in total-P (PT) losses due to no-till compared to the conventional tillage system were 89 and 91 percent for surface application and subsurface injection methods, respectively. Averaged across all fertilizer treatments, an equivalent of 0.9 and 8.9 percent of the P applied to the plots were lost from the no-till and conventional tillage plots, respectively. 相似文献
103.
本文就柘溪水库库区梯级桔园生草覆盖的生态效益进行了分析。结果表明,梯级桔园生草覆盖有效地控制了水土流失,改善了土壤理化性能,达到了保土保水保肥的目的;还可调节桔园小气候,为桔园生产创造了良好的生态环境,有利于柑桔的稳产高产。 相似文献
104.
105.
保护性耕作对土壤结构体碳氮分布的影响 总被引:4,自引:0,他引:4
以7年不同耕作的定位试验为研究对象,研究了深松、旋耕、免耕等保护性耕作对关中塿土小麦-玉米轮作条件下土壤结构体分布以及结构体中有机碳和全氮含量、储量的影响。结果表明,与传统耕作相比,深松、旋耕、免耕以及秸秆还田+传统耕作均提高了5 mm粒级结构体的含量。随着土壤结构体粒径的增大,结构体有机碳含量逐渐减小,有机碳含量在0.25 mm结构体中平均含量为10.87 g/kg,在5 mm结构体中平均含量为9.57 g/kg。在0.25 mm的各粒级结构体中,全氮含量也随着结构体粒径的增加而减小。深松和旋耕处理较免耕和传统耕作更有利于结构体中有机碳、氮含量的增加;深松和旋耕比较,深松更有利于2 mm结构体碳氮含量的增加。相关分析表明,土壤碳氮含量和较小粒级(2 mm)结构体的碳氮含量之间的相关性最好。从有利于结构体保持和有机碳、氮储量增加的角度考虑,深松和旋耕是当地较理想的耕作方式。 相似文献
106.
Decisionmakers are in the process of selecting remedial measures for controlling nonpoint pollution runoff. Conservation tillage (CT) is being looked to as one of the major recommended practices. Many different systems exist and vary in the amount of crop residue left and soil roughness produced. Therefore, varying results occur in terms of yield and potential water quality impacts. Differences vary with type of tillage system, soils, geographic region, and the farmer's management. The purpose of this review is to provide material to decisionmakers that points out the assets and liabilities of the various CT systems. Tillage effects on soil characteristics and plant growth are presented and include a discussion of soil moisture and temperature, weed and insect control, nutrient availability, and yields. Water quality aspects are addressed through a discussion of the effects CT systems have on sediment, water, pesticide, and phosphorus loss.This work was supported by the Soil Science Department, College of Agriculture and Life Sciences, University of Wisconsin-Madison, and the U.S. Environmental Protection Agency, Region V, Chicago, Illinois. (Grant No. G005139-01). 相似文献