全文获取类型
收费全文 | 341篇 |
免费 | 34篇 |
国内免费 | 269篇 |
专业分类
安全科学 | 7篇 |
废物处理 | 16篇 |
环保管理 | 28篇 |
综合类 | 298篇 |
基础理论 | 108篇 |
污染及防治 | 179篇 |
评价与监测 | 7篇 |
社会与环境 | 1篇 |
出版年
2023年 | 10篇 |
2022年 | 19篇 |
2021年 | 17篇 |
2020年 | 19篇 |
2019年 | 16篇 |
2018年 | 22篇 |
2017年 | 24篇 |
2016年 | 38篇 |
2015年 | 44篇 |
2014年 | 47篇 |
2013年 | 43篇 |
2012年 | 42篇 |
2011年 | 35篇 |
2010年 | 31篇 |
2009年 | 30篇 |
2008年 | 32篇 |
2007年 | 37篇 |
2006年 | 23篇 |
2005年 | 20篇 |
2004年 | 15篇 |
2003年 | 13篇 |
2002年 | 8篇 |
2001年 | 11篇 |
2000年 | 8篇 |
1999年 | 14篇 |
1998年 | 5篇 |
1997年 | 2篇 |
1996年 | 4篇 |
1995年 | 6篇 |
1994年 | 1篇 |
1993年 | 2篇 |
1992年 | 4篇 |
1990年 | 1篇 |
1987年 | 1篇 |
排序方式: 共有644条查询结果,搜索用时 15 毫秒
71.
72.
During the acidogenic fermentation converting waste activated sludge (WAS) into short-chain fatty acids (SCFA), hydrolysis of complex organic polymers is a limiting step and the transformation of harmful substances (such as antibiotics) during acidogenic fermentation is unknown. In this study, potassium ferrate (K2FeO4) oxidation was used as a pretreatment strategy for WAS acidogenic fermentation to increase the hydrolysis of sludge and destruct the harmful antibiotics. Pretreatment with K2FeO4 can effectively increase the SCFA production during acidogenic fermentation and change the distribution of SCFA components. With the dosage of 0.2 g/g TS, the maximum SCFA yield was 4823 mg COD/L, which is 28.3 times that of the control group; acetic acid accounts for more than 90% of the total SCFA. The higher dosage (0.5 g/g TS) can further increase the proportion of acetic acid, but inhibit the overall performance of SCFA production. Apart from the promotion of hydrolysis and acidogenesis, K2FeO4 pretreatment can also simultaneously oxidizes and degrades part of the antibiotics in the sludge. When the dosage is 0.5 g/g TS, the degradation efficacy of antibiotics is the most significant, and the contents of ofloxacin, azithromycin, and tetracycline in the sludge are reduced by 69%, 42%, and 50%, respectively. In addition, K2FeO4 pretreatment can also promote the release of antibiotics from sludge flocs, which is conducive to the simultaneous degradation of antibiotics in the subsequent biological treatment process. 相似文献
73.
74.
在兼氧条件下,利用厨余垃圾厌氧发酵液调节反硝化系统的碳氮比(COD/TN,C/N),并考察了其脱氮性能.结果表明,不同C/N条件下,反应系统均未出现有机物的积累,但高C/N条件下的亚硝酸盐最大积累浓度和积累速率高于低C/N;随着进水C/N的增大,反应整体脱氮率和反硝化速率不断增大,当C/N为13时,反硝化速率达到了最大值,为9.79mg/(gVSS·h),其脱氮率超过95%;相同C/N条件下,反硝化速率和最大亚硝酸盐积累浓度均与进水硝酸盐浓度成正比.此外,实验结果表明,兼氧条件下的反硝化过程虽不易出现COD残留,但去除单位氮所需的有机物更多,且整体反硝化速率以及亚硝酸盐还原速率均低于厌氧条件. 相似文献
75.
76.
通过固定水力停留时间(HRT)为20d,逐步提高进料总固体(TS)浓度为5.0%,7.5%和10.0%的方式提高有机负荷(OLR),在高温(55±1)℃条件下开展鸡粪长期甲烷发酵实验并测定了各阶段污泥的比产甲烷活性(SMA),探究氨氮浓度对鸡粪高温甲烷发酵的影响.结果显示,当进料TS由5.0%增至10.0%,出料氨氮浓度由(2.5±0.3)g/L增至(6.1±0.2)g/L,挥发性脂肪酸(VFAs)由(0.4±0.1)g/L增至(26.1±1.5)g/L,pH值由(8.3±0.2)降至(6.9±0.1),产气率由(267.2±12.5)mL/g TSin降至49.8±8.2mL/g TSin,甲烷浓度由(67.2±1.3)%降至(36.0±1.7)%.长时间采用TS 10.0%的进料浓度,发酵系统中氨氮浓度最高达到7.5g/L,VFAs浓度达到27.0g/L,产气下降明显.氨氮抑制鸡粪高温甲烷发酵产气的初始浓度为2.5~3.0g/L.进料TS大于7.5%,鸡粪高温甲烷发酵会受到氨氮抑制.氨氮浓度的升高导致高温发酵体系利用乙酸产甲烷的能力降低,氨氮浓度达到5.5g/L,SMA降低60.0%;氨氮浓度达到7.0g/L,污泥利用乙酸产甲烷的活动几乎停止. 相似文献
77.
78.
污泥厌氧发酵产氢的影响因素 总被引:11,自引:1,他引:11
污水生物处理过程中产生大量剩余污泥, 通常采用厌氧发酵处理并获取甲烷气体. 产氢产酸是污泥厌氧消化过程中的一个中间阶段. 本研究考察了原污泥和经碱处理的污泥在不同初始pH(3.0~12.5)条件下的产氢效果, 以及污泥性质和污泥浓度等对产氢效果的影响. 结果表明, 当初始pH为11.0时污泥发酵的产氢率达到最大值.采用原污泥发酵产氢时, 在初始pH为11.0的条件下发酵产氢获得的最大产氢率为8.1 mL/g, 而经碱处理的污泥在同样初始pH的条件下发酵产氢可将其产氢率提高一倍左右, 达到16.9 mL/g. 污泥经碱处理后厌氧发酵4d无甲烷产生, 且可有效地降低氢气消耗的速率. 另外, 污泥的VSS/SS值过低时会大大降低污泥的产氢率, 而污泥浓度对产氢率无明显影响. 相似文献
79.
80.
浙江发酵制药大气污染物排放标准制订研究 总被引:2,自引:0,他引:2
该研究分析了浙江省发酵制药行业主要大气污染物的排放状况,识别出了发酵制药行业使用的主要有机溶剂,其中丙酮、乙酸乙酯、甲醇和乙醇是该行业使用频率最高的4种有机溶剂,并得到了行业的挥发性有机污染物的成分谱。评估了发酵制药企业大气污染防治现状,并对行业大气污染防治以及环境管理等方面存在的问题进行了深入剖析。最后从发酵制药企业内部污染防治、完善行业环境监管的角度提出了发酵制药行业污染防治的基本对策和制订地方发酵制药行业大气污染物排放标准的基本思路。 相似文献