首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   21篇
  国内免费   1篇
安全科学   8篇
综合类   9篇
基础理论   2篇
污染及防治   1篇
灾害及防治   17篇
  2024年   1篇
  2023年   5篇
  2022年   5篇
  2021年   6篇
  2020年   5篇
  2019年   4篇
  2018年   4篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2010年   1篇
排序方式: 共有37条查询结果,搜索用时 281 毫秒
11.
多硫化钙对铬污染土壤处理效果的长期稳定性研究   总被引:1,自引:0,他引:1  
稳定化修复技术逐渐成为我国现阶段重金属污染土壤修复的主要技术,其修复后验收主要通过分析土壤重金属的浸出浓度来评价修复效果,然而该验收指标未反映土壤重金属在不同情景下的长期稳定性.本研究以经稳定化药剂多硫化钙(CPS)处理前后的某电镀厂铬(Cr)污染土壤为对象,开展多pH浸出、模拟酸雨淋溶、冻融循环和干湿交替作用下土壤重金属Cr的长期稳定性研究.结果表明:在多pH浸出实验中,稳定化处理后达标土壤(CPS-D-3)在pH大于6.92时,Cr(Ⅵ)浸出浓度大于0.05 mg·L~(-1).在整个试验模拟酸雨淋溶作用的过程中(30年),稳定化处理可以有效抑制Cr向环境中释放,CPS-D-3中的总Cr和Cr(Ⅵ)的累积释放量比未经稳定化处理的Cr污染土壤(CPS-D-1)分别显著减少了91.86%和99.61%.在冻融循环的过程中,稳定化处理可有效降低土壤中浸出总Cr的含量.经过15次干湿交替后CPS-D-1和CPS-D-3分别比未经过干湿交替作用时浸出总Cr浓度减少了99.96%和96.88%.多pH浸出试验可以作为检验土壤安全的较为敏感的指标,冻融循环、模拟酸雨淋溶和干湿交替评估方法可协助评价重金属的长期稳定性.  相似文献   
12.
文章对除冰盐环境下混凝土的冻融损伤进行了试验研究,通过对比混凝土外观变化规律、超声设备检测结果以及混凝土触水面渗透情况来获得不同冻融循环次数下混凝土的损伤深度情况。研究结果表明,当经历20次冻融循环后,混凝土冻融损伤开始向混凝土内部扩展。当经历30次冻融循环后,混凝土冻融损伤深度向下快速发展。当经历70次冻融循环后,混凝土冻融损伤向下发展变慢。这是由于前期冻融循环造成混凝土试件顶部产生大量微裂缝足以排出由于结冰产生的开裂应力,从而减弱冻融损伤向下发展的趋势。而在实际混凝土桥梁表面由于磨损存在,冻融损伤会不断向内扩展,值得桥梁管理人员注意。另外,在90次冻融循环后,最大渗透深度达到25mm,即细观裂缝已经接近普通钢筋混凝土结构中钢筋的位置,容易引发钢筋锈蚀问题。本试验研究结果可以为北方寒冷地区混凝土桥梁的抗锈蚀设计提供依据。  相似文献   
13.
为了评估长期冻融循环后(最长90d (次))固化复合重金属污染土的的抗剪强度及浸出特征,采用水泥、生石灰和粉煤灰按比例混合的复合固化剂固化/稳定化铅锌镉复合重金属污染土进行三轴压缩试验及毒性特征浸出程序试验.结果表明,固化污染土体的内摩擦角仅在冻融循环3次内有明显增加,增加率高达96.3%;粘聚力在冻融循环30次内总体趋势不断下降,之后无显著变化,最终下降率达到54.23%;Pb2+、Zn2+、Cd2+浸出浓度与冻融循环次数呈正比;EC值与冻融循环次数在总体上正相关;长期冻融循环作用后浸出液的pH值降低.并通过扫描电子显微镜,进一步探究长期冻融循环下固化污染土抗剪强度及浸出特征的劣化机理,结果显示在冻融循环后期固化土体内生成了大量的延迟钙矾石,这些延迟钙矾石在形成过程中的膨胀作用是引起抗剪强度损失、重金属浸出浓度升高的主要原因.  相似文献   
14.
混凝土构件是在荷载和其它因素共同作用下工作的,结构的使用荷载和使用环境是共存的,不受力的混凝土耐久性基础研究并不能代表实际构件的耐久性水平。影响构件耐久性的因素很多,本文阐述了荷载与其它因素协同作用下混凝土耐久性研究进展情况,着重介绍了荷载对于混凝土抗碳化、抗盐类侵蚀和水渗透以及抗冻融性能的影响。  相似文献   
15.
为研究冻融循环作用对岩石力学特性的影响,对砂岩试件依次进行冻融循环处理、单轴压缩实验以及筛分实验,分析不同冻融循环次数下砂岩试件加载过程中的能量演化、分配规律以及破坏后碎屑尺度分布的分形特征,并讨论冻融循环作用的影响效应。结果表明:随着冻融循环次数的增加,单轴抗压强度和弹性模量均呈指数衰减的趋势,峰值应力点对应的耗散应变能及其与总能量比值表现出类似的变化规律。这些试件破坏后的碎屑尺度分布具有分形特征,分形维数在2.50~2.61之间。数据拟合进一步表明冻融循环作用下耗散应变能与分形维数之间呈显著的线性正相关关系,这是因为冻融循环次数越大使得砂岩试件的抗压强度越小,破坏所需的耗散应变能越小,试件破碎程度越不严重,导致相应的分形维数越小。  相似文献   
16.
冻融对污染场地土壤重金属稳定化性能的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
为了分析冻融对污染场地土壤重金属稳定化性能的影响,采用赤泥和硫化钠作为添加剂,对土壤中的Pb、Zn和Cd进行稳定化处理,并通过模拟冻融过程,分析冻融循环后重金属的浸出毒性、生物可给性、土壤pH和土壤结构的变化,探讨冻融循环对稳定化处理土壤中重金属长期稳定性能的影响. 结果表明:稳定化处理后土壤中Pb、Zn和Cd的浸出毒性比原始供试土壤分别降低了98.5%、99.8%和99.7%. 养护30 d后,稳定化处理土壤中Zn和Cd的生物可给性分别由28.8%、49.5%降至11.5%、21.8%,Pb的生物可给性由52.9%升至57.9%. 经过30 d冻融循环后,冻融土壤中Pb、Zn和Cd的浸出毒性比原始供试土壤中相应重金属质量分数分别增加了4.27、2.47、89.65 mg/L. 经过冻融循环后,土壤中重金属的生物可给性比未冻融土壤略有升高. 随着养护时间和冻融时间的延长,土壤pH呈升高趋势. 不同阶段土壤扫描电镜结果显示,冻融循环致使土壤空隙变大、结构松散,说明冻融循环对稳定化土壤结构有一定损伤. 分析结果表明,冻融过程增加了Pb、Zn和Cd释放的环境风险.   相似文献   
17.
透水铺装是雨水源头减排的重要技术之一,其在寒冷地区冻胀损坏是亟待解决的突出问题。透水砖是广泛采用的透水铺装材料,通过冻融循环实验,对透水砖铺装面层不同孔隙率、水饱和度及不同透水基层厚度条件下的面层抗冻性进行研究,结果表明:面层孔隙率与其抗冻性能呈负相关,孔隙率越高,面层抗冻性能越差。面层水饱和度与其抗冻性能呈负相关,水饱和度越高,抗冻性能越差;面层水饱和度90%是产生冻胀损坏的临界值,当面层水饱和度<90%时,其抗冻性能受损较小;当面层水饱和度>90%时,其抗冻性能明显变差。透水基层厚度对透水砖铺装面层抗冻性的影响较小。3个主要因素对透水砖铺装面层抗冻性能影响程度顺序为:面层水饱和度 > 面层孔隙率 > 透水基层厚度。  相似文献   
18.
西藏东南地区冰碛土堆积体广泛分布,冻融作用严重影响冰碛土堆积体稳定性。对西藏东南及川滇地区 200 组冰碛土粒径级配进行对比分析,并通过室内直剪试验研究了不同含水量和冻融循环作用下冰碛土剪切力学特性,结合试样体积变化及水分迁移规律分析黏聚力劣化机制。结果表明:(1)冰碛土粒径范围较广,相比川滇地区, 西藏东南冰碛土细粒含量更多;(2)冻融循环后,黏聚力 c 呈负指数型函数降低,内摩擦角 φ 波动幅度-6.47%~+ 5.46%;(3)含水量越高、冻融循环次数越多、垂直应力越大的试样剪胀性越弱,剪缩性越强;冻融循环条件下,含水量越高的试样剪切带厚度变化范围越大;(4)冻融 6 次后,冰碛土体积无显著增长,水分迁移呈规律性,与黏聚力在冻融 6 次后劣化减缓相一致。  相似文献   
19.
岩石冻融损伤机理的研究对寒区公路、铁路等工程建设具有重要意义。通过文献调研发现,岩石冻融损伤机理研究主要包括岩石冻融损伤的影响因素、冻融损伤的劣化模式、冻融岩石的细观结构和力学性质这 4 方面的内容。对以上 4 方面的国内外研究现状进行综述,总结归纳出岩石的冻融损伤机理,并提出了当前研究的难点与不足。最后依据岩石冻融损伤机理研究的难点与不足,提出未来的研究工作可以从以下几方面开展:开展冻融循环周期对岩石损伤影响的试验研究;探究裂隙或节理的初始饱和度对岩石冻融损伤的影响规律;建立冻融作用下岩石未冻水含量的计算模型及岩石的多相多场耦合模型;进行多因素综合作用和不同应力环境下冻融岩石力学性质的试验研究,重点研究岩石动力学特性的变化规律及动态本构模型的建立。  相似文献   
20.
以澜沧江某水电站坝址区碎裂松动岩体为研究对象,通过对岩质边坡现场调查,并运用 ANSYS 有限元软件模拟河谷演化和冻融循环过程,综合分析碎裂松动岩体的成因。调查结果表明,碎裂松动岩体的形成与区域赋存的地应力场、地层岩性、河谷演化及高原冻融风化有关。数值模拟揭示了河谷演化过程中边坡岩体持续经历主应力降低、剪应力增大的状态,应力释放而驱动边坡岩体结构面破裂,形成大量的卸荷拉张裂隙,初现“松动”特征;在大温差冻融循环作用下,原本存在裂隙面的岩体不断扩展延伸直至发生疲劳性损伤裂化。由此,总结了碎裂松动岩体的成因机制,该成果对高寒山区深切河谷碎裂松动岩体的形成机制提供依据。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号