全文获取类型
收费全文 | 3617篇 |
免费 | 400篇 |
国内免费 | 1848篇 |
专业分类
安全科学 | 333篇 |
废物处理 | 226篇 |
环保管理 | 236篇 |
综合类 | 3394篇 |
基础理论 | 341篇 |
污染及防治 | 1140篇 |
评价与监测 | 47篇 |
社会与环境 | 6篇 |
灾害及防治 | 142篇 |
出版年
2024年 | 47篇 |
2023年 | 144篇 |
2022年 | 219篇 |
2021年 | 205篇 |
2020年 | 167篇 |
2019年 | 211篇 |
2018年 | 187篇 |
2017年 | 182篇 |
2016年 | 217篇 |
2015年 | 213篇 |
2014年 | 302篇 |
2013年 | 227篇 |
2012年 | 244篇 |
2011年 | 244篇 |
2010年 | 229篇 |
2009年 | 275篇 |
2008年 | 309篇 |
2007年 | 296篇 |
2006年 | 284篇 |
2005年 | 256篇 |
2004年 | 226篇 |
2003年 | 185篇 |
2002年 | 129篇 |
2001年 | 109篇 |
2000年 | 96篇 |
1999年 | 89篇 |
1998年 | 84篇 |
1997年 | 84篇 |
1996年 | 69篇 |
1995年 | 72篇 |
1994年 | 52篇 |
1993年 | 69篇 |
1992年 | 43篇 |
1991年 | 35篇 |
1990年 | 30篇 |
1989年 | 31篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 2篇 |
排序方式: 共有5865条查询结果,搜索用时 15 毫秒
851.
852.
对不同pH下Chlortoluron氯化后生成的非挥发性中间产物和挥发性产物进行了研究。对Chlortoluron氯化后的非挥发性中间产物的UPLC-ESI-MS鉴定发现了m/z为213、229、263、281、和247的离子,分析表明它们分别是Chlortoluron及其一羟基、一氯羟基、二氯和一氯衍生物。对Chlortoluron氯化后的挥发性产物采用吹扫补集-GC-MS进行分析鉴定发现了三氯甲烷(CF)、二氯硝基甲烷(DCNM)、二氯乙腈(DCAN)、1,1-2-二氯丙酮(1,1-DCP)、三氯硝基甲烷(TCNM)和1,1,1-2-三氯丙酮(1,1,1-TCP)六种消毒副产物。根据本研究中的实验结果分析和推测,在Chlortoluron的氯化过程中,苯环上和脲基链上都经历了羟基化、氧化和取代反应,接着苯环被打破,随后生成了更为有害的副产物,基于此,本文推断了Chlortoluron的氯化降解途径。 相似文献
853.
设计全因子实验研究了NO-3-N对填埋10~12 a的矿化垃圾中兼/厌氧甲烷氧化作用的影响.结果表明,兼/厌氧条件下,NO-3-N能促进矿化垃圾中CH4的去除.初始CH4和NO-3-N对CH4去除和N2产生有明显影响,且两者具有交互作用(P<0.05).CH4去除量随着初始CH4体积分数的增加而增加,添加一定含量的NO-3-N能促进CH4去除,同时通入一定体积分数CH4可以明显促进反硝化作用,说明矿化垃圾中NO-3-N还原能与兼/厌氧甲烷氧化耦合.本实验条件下,初始CH4体积分数为30%,NO-3-N含量为110 mg·kg-1时耦合效应较好. 相似文献
854.
为实现厌氧氨氧化颗粒污泥(ANAMMOX granular sludge,AGS)的快速培养,采用上流式厌氧污泥床(up-flow anaerobic sludge bed,UASB)工艺,在添加少量絮状厌氧氨氧化污泥(flocculent ANAMMOX sludge,FAS)的反应器内填充生物流离球作为填料,对ANAMMOX的启动及FAS的颗粒化进行研究.同时利用Haldane模型研究AGS的基质抑制动力学特性.结果表明,利用生物流离球作为填料,实现了ANAMMOX的启动,总氮去除率达85%以上,总氮容积负荷为0. 72 kg·(m3·d)-1,并在127 d内成功培养出直径1. 0~3. 0 mm的AGS.动力学研究表明,反应器内AGS对氨和亚硝酸盐的最大反应速率分别为1. 46 kg·(kg·d)-1和1. 76 kg·(kg·d)-1,半抑制速率分别是852. 2 mmol·L-1和108. 2 mmol·L-1.与絮状污泥相比,AGS能承受更高的氨和亚硝酸盐抑制浓度,并保持较高的反应速率.采用含有海绵的生物流离球作为填料,能有效加速反应器的启动,加快AGS的形成,对厌氧氨氧化工艺的实际运行具有积极的意义. 相似文献
855.
为促进污水处理厂污泥及农作物秸秆的资源化利用,探讨不同类型秸秆(玉米、小麦、水稻)对污泥厌氧消化特性、产气效果及细菌群落结构的影响,在中温〔(35±1)℃〕下,研究了污泥与秸秆按不同质量比(1:0、1:0.5、1:1、1:1.5)联合厌氧消化对污泥C/N(碳氮比)和厌氧消化环境中pH、ρ(NH4+-N)、ρ(VFAs)(VFAs为挥发性脂肪酸)、日均沼气产量及φ(CH4)、细菌群落的特征变化,以未添加秸秆的污泥厌氧消化为CK(对照).结果表明:不同类型秸秆的添加对厌氧消化体系的pH、ρ(NH4+-N)、ρ(VFAs)均产生显著影响,秸秆的加入明显提高了厌氧消化体系的产气量.联合厌氧消化可通过优化厌氧消化底物的C/N,从而增加ρ(VFAs)和φ(CH4).其中,污泥与玉米秸秆质量比为1:1.5时对厌氧消化的促进作用最为显著;其沼气日产量为2 303.08 mL,比CK(536.15 mL)提高了3倍以上,而沼气中φ(CH4)最高为54.49%,比CK(37.07%)提高46.99%.此外,不同类型秸秆的添加也可通过改变细菌群落结构从而促进秸秆降解,增加ρ(VFAs)和提高沼气产量,特别是添加秸秆后,Bacteroidetes会逐渐取代Proteobacteria成为主要的产酸菌种,从而导致ρ(VFAs)增加.研究显示,污泥与秸秆联合厌氧消化可改善污泥营养结构,改变细菌群落结构,提高沼气产量. 相似文献
856.
温度对自养型同步脱氮工艺处理猪场废水厌氧消化液性能及微生物群落的影响 总被引:2,自引:2,他引:2
通过运行4个不同温度条件下(30、25、20和15℃)的自养型同步脱氮反应器,研究了不同温度下自养型同步脱氮工艺处理猪场废水厌氧消化液的性能差异及其微生物机制.结果表明,30℃条件下反应器脱氮性能最佳.当温度由30℃降为25℃时,反应器总氮去除率从73%降低到66%,总氮去除速率从2. 29 kg·(m~3·d)~(-1)降低到1. 72 kg·(m~3·d)~(-1),污泥的形态和粒径变化不明显(SMD由80. 85μm降为79. 95μm).当温度低于20℃时,总氮去除率降低到42%,总氮去除速率降低到1. 18 kg·(m~3·d)~(-1),同时发现污泥出现解体现象,粒径减小(SMD为63. 21μm).而当温度为15℃时,总氮去除率降低至37%,总氮去除速率低至1. 00 kg·(m~3·d)~(-1),反应器运行困难.微生物群落结构分析表明,温度对厌氧氨氧化细菌的影响明显大于氨氧化细菌,因此低温条件下反应器脱氮性能下降的主要原因是厌氧氨氧化细菌对温度更敏感. 相似文献
857.
污泥预处理方法包括机械法、化学法和生物法,选择上述方法中具有代表性的超声波20 k Hz、p H 10和厌氧70℃分别预处理污泥,从有机物释放情况和经济性评价不同预处理方法.结果表明,污泥经过预处理后,液相中有机物释放量均增多,但经过p H 10和厌氧70℃预处理后能释放更多的有机物,反应结束时其总溶解性蛋白质和多糖由预处理前的418. 9mg·L~(-1)(以COD计,下同)分别增加到7 516. 0 mg·L~(-1)和7 892. 5 mg·L~(-1),DNA浓度由预处理前的18. 1 mg·L~(-1)依次增加到1 343. 3 mg·L~(-1)和1 766. 1 mg·L~(-1);通过流式细胞术鉴定细胞形态得出预处理结束时污泥细胞死亡率从高到低为61. 6%(p H10)、59. 9%(厌氧70℃)和34. 5%(超声波20 k Hz),相比预处理前分别提高45. 6%、43. 9%和18. 5%;预处理结束时污泥有机物去除率依次为19. 1%(p H 10)、13. 8%(厌氧70℃)和7. 6%(超声波20 k Hz);单位体积污泥经p H 10预处理比超声-20kHz和厌氧70℃分别多节约28. 5%和124. 1%.基于本研究中污泥有机物释放量和经济性,污泥预处理方法宜选择化学法(p H 10). 相似文献
858.
为进一步提高电极生物膜反应器的脱氮效能,采用导电聚合物聚噻吩(PTh)和电子穿梭体蒽醌-2,6-二磺酸二钠(AQDS)改性阴极材料石墨毡,系统研究了不同碳氮比(C/N)条件下,改性电极的应用对BER体系的脱氮效能、电极表面生物相和体系微生物群落结构等方面的影响.结果表明,应用PTh与AQDS协同处理石墨毡的BER体系的NO~-_3-N去除速率和效能均明显优于未处理电极体系,在HRT=4 h、C/N为2.0时NO~-_3-N的去除率达到90.0%以上.PTh/AQDS改性石墨毡电极的生物膜与电极的比重为0.26±0.04,其值为对照组的2.4倍,证明了PTh/AQDS改性后电极具有更优的生物相容性.应用PTh/AQDS改性电极的BER具有更好的微生物丰富度和多样性,AQDS促进了特定微生物Thauera_mechernichensis(24.6%)的富集和亚硝酸盐还原酶的活性,保障了BER体系的反硝化效能. 相似文献
859.
氧气进入还原性的地下水中,会与地下水中的还原性组分发生系列化学反应,从而改变地下水的化学特性,通过调控这些化学反应有望快速修复污染地下水。为此,该文以江汉平原高铁地下水为例,研究曝气对地下水化学特性的影响。曝气实验在湖北省潜江市一口高铁浅层地下水井中进行,测定曝气过程中地下水溶解氧(DO)、氧化还原电位(ORP)、pH值和其中铁、锰、三氮、磷、碳酸氢根等浓度的变化。研究结果表明,曝气在增加地下水中DO和ORP的同时,地下水中的铁、锰快速完全氧化,磷酸盐随之沉淀;碳酸根减少,使pH值增加近一个单位;同时,氨态氮含量略增加,硝态氮含量先增后减,暗示曝气后期好氧反硝化作用的存在。这些结果可为污染地下水修复技术提供重要的参考依据。 相似文献
860.
在玻璃鼓泡反应瓶中进行H_2O_2和Na_2S_2O_8两种混合氧化剂吸收SO_2和NO的实验研究,结果表明,混合氧化剂的脱硫脱硝总效率(系统脱硫与脱硝效率之和)明显大于其各自单独使用的情况。选取浓度为2%H_2O_2和10%Na_2S_2O_8混合氧化剂溶液作为实验工质,研究混合氧化剂不同浓度、温度、pH、液位高度、混合气速以及反应级数等参数对系统脱硫脱硝效果的影响。结果表明:随着混合氧化剂温度从15℃升高到90℃,系统的脱硫脱硝率分别提高了3. 64%、11. 95%;随着混合氧化剂pH值从7增加到13,系统脱硫率提高了2. 14%;随着混合氧化剂pH值从7增加到11,系统脱硝率提高了1. 36%,pH值从11增加到13,系统脱硝率下降了0. 57%;随着混合氧化剂的液位高度从2 cm增加到8 cm,系统的脱硫脱硝率分别提高了12. 84%、7. 78%;随着混合流量从2. 5 L/min增加到12. 5 L/min,系统的脱硫脱硝率分别下降了5%、4. 34%。随着反应瓶级数从1增加到4,系统的脱硫脱硝率分别提高了22. 06%、15. 34%。系统的脱硫脱硝率随混合氧化剂的温度、液位高度、反应瓶级数增加而提高,随烟气气速增加而降低。而随着混合氧化剂pH值的升高,系统脱硫率呈上升趋势,而脱硝率呈先升后降趋势。 相似文献