首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5757篇
  免费   807篇
  国内免费   2696篇
安全科学   707篇
废物处理   451篇
环保管理   311篇
综合类   5119篇
基础理论   951篇
污染及防治   1500篇
评价与监测   157篇
社会与环境   28篇
灾害及防治   36篇
  2024年   69篇
  2023年   219篇
  2022年   307篇
  2021年   355篇
  2020年   305篇
  2019年   386篇
  2018年   232篇
  2017年   280篇
  2016年   305篇
  2015年   391篇
  2014年   600篇
  2013年   479篇
  2012年   552篇
  2011年   518篇
  2010年   445篇
  2009年   452篇
  2008年   430篇
  2007年   400篇
  2006年   370篇
  2005年   259篇
  2004年   264篇
  2003年   270篇
  2002年   182篇
  2001年   176篇
  2000年   149篇
  1999年   127篇
  1998年   119篇
  1997年   114篇
  1996年   127篇
  1995年   95篇
  1994年   72篇
  1993年   53篇
  1992年   48篇
  1991年   39篇
  1990年   33篇
  1989年   29篇
  1988年   6篇
  1987年   2篇
  1986年   1篇
排序方式: 共有9260条查询结果,搜索用时 343 毫秒
11.
反硝化作用是地下水硝酸盐污染去除最重要的过程.由于水文地质条件和水文地球化学环境的复杂性和不确定性,精准测定含水层反硝化速率是反硝化过程的研究难点.选取潮白河冲洪积扇中部中国环境科学研究院地下水创新野外基地作为研究区,基于野外原位试验和15N同位素示踪法提出一种含水层反硝化速率的测定方法.该方法综合体现了研究区实际水文地质条件和水文地球化学环境对反硝化作用的影响,并充分考虑了硝酸盐在含水层中稀释弥散作用对计算结果的影响.结果表明:①潮白河冲洪积扇中部某地地下26~28 m处于还原环境,含水介质以粉细砂为主,ρ(NO3-N)平均值为2.77 mg/L.②地下26~28 m反硝化速率在349.52~562.99 μg/(kg·d)(以N计,下同)之间,平均值为450.31 μg/(kg·d).通过与研究区含水介质、采样深度和硝酸盐背景值相似的国内外案例对比研究,初步评估结果处于合理区间.③测试结果具有一定不确定性,主要来自忽略中间产物NO2-和NO的计算方法、扰动采样方法、N2O的操作规范程度及采样频率等方面.研究方法为测定含水层硝酸盐速率研究提供了新的思路,研究结果可为地下水中硝酸盐转化过程机理研究、地下水硝酸盐污染修复及风险管控提供关键的理论支撑数据.   相似文献   
12.
陈林  平巍  闫彬  吴彦  付川  黄炼旗  刘露  印茂云 《环境工程》2020,38(8):119-124
以城市剩余污泥为原料,于300,400,500,600 ℃温度条件下制备生物炭,通过单因素静态吸附实验探讨制备温度对生物炭吸附Cr(Ⅵ)的影响。结果表明:在500 ℃以内随着温度上升制备的生物炭对Cr(Ⅵ)的吸附量增加,制备温度高于500 ℃后变化不明显;扫描电镜(SEM)、比表面积(BET)、傅里叶红外光谱(FTIR)表征结果显示,热解温度对生物炭表面形貌和官能团组成有显著影响;等温模型及动力学拟合结果表明,生物炭吸附Cr(Ⅵ)为单分子层吸附、物理-化学复合吸附。热解温度对污泥制备生物炭吸附Cr(Ⅵ)的性能有显著影响,最佳制备温度为500 ℃,在此条件制备的生物炭对Cr(Ⅵ)的理论吸附量可达7.93 mg/g。  相似文献   
13.
生物炭作为1种环境友好型吸附材料,可有效去除并回收水体中的磷,由此也成为当前的研究热点之一。综述了目前国内外生物炭吸附磷酸盐及磷素回收研究现状,主要总结了控制生物炭吸附磷酸盐的4种主要机制,阐述了影响生物炭吸附除磷过程中的主要影响因素,介绍了目前应用研究的方向并提出生物炭在实际应用中所面临的问题并对未来研究方向进行了展望,以期为未来研究及推广应用提供理论支撑。  相似文献   
14.
以正硅酸乙酯(TEOS)为疏水改性剂,通过硅胶表面的羟基接枝反应,得到具备一定疏水性的改性硅胶;利用BET、FT-IR、XRD和TG-DTG等手段对改性硅胶的结构及稳定性进行了表征;在此基础上考察了改性硅胶对各类有机废气的吸附性能.结果表明,TEOS成功接枝在了硅胶表面,改性硅胶不仅具备一定的疏水性,而且机械强度增加到原来的66.85%,稳定性也都得到了提高; 550℃空气下焙烧后的改性硅胶仍具有疏水性且吸附容量是焙烧之前的2倍;在高湿度高浓度的废气治理中,TEOS改性硅胶表现出更高的吸附能力和优良的热再生性能.高浓度下改性硅胶的吸附容量是低浓度下的10倍且不受水汽的影响;改性硅胶循环10次的吸附/脱附几乎不变,且在一定条件下,15~30min就达到90%的脱附率.  相似文献   
15.
于2016年在中国广东大气超级监测站,开展4个季节的VOCs长时间观测,共获得2142组有效数据,并利用HYSPLIT模型分析珠三角地区VOCs时空分布特征.结果表明,各类VOCs混合比和化学反应活性具有明显的季节变化特点.观测期间,VOCs平均浓度为(18.523±20.978)×10-9,其中,低碳烯烃和苯系物二者混合比之和仅占46%,但贡献了85%的·OH消耗速率(LOH)、82%的臭氧生成潜势(OFP)和97%的二次气溶胶生成潜势(SOAFP).观测站点主要受来自北部内陆地区气团(1#)、西部内陆地区气团(2#)、台湾海峡南端气团(3#)以及南部海洋地区气团(4#)的影响.1#气团中炔烃和苯系物的混合比占比最高,分别达到10%、37%,而3#气团中低碳烷烃的浓度水平最高,达到(8.437±5.561)×10-9.通过估算气团中VOCs的化学反应活性,可以发现,1#气团的VOCs化学反应活性最强,其对O3和SOA的生成贡献最高.1#、2#、3#和4#气团中VOCs的化学反应活性主要由苯系物和低碳烯烃贡献.  相似文献   
16.
毕薇薇  陈娅  马晓雁  邓靖 《中国环境科学》2020,40(11):4762-4769
采用水热法成功制备了磁性有序介孔碳(Fe-OMC),用于吸附水中双酚A (BPA).采用高倍投射电镜、X射线衍射仪、傅里叶红外光谱仪、比表面积分析仪和振动样品磁强计对Fe-OMC进行表征.结果表明,该吸附剂具备较大的比表面积、独特的有序介孔孔道结构、丰富的含氧官能团以及较强的超顺磁性.Fe-OMC能够高效地吸附去除水中的BPA,平衡吸附量可达72.62mg/g,经过外加磁场分离回收后依旧具备较好的吸附性能.随着BPA浓度从1mg/L提高到20mg/L,其平衡吸附量由8.33mg/g增至91.78mg/g.随着pH值的升高呈现出先降低后升高再降低的趋势,最高吸附量出现在pH=8(75.34mg/g).Fe-OMC对BPA的吸附过程可用准二级吸附动力学模型和Langmuir吸附等温模型进行描述.计算的热力学参数表明,Fe-OMC对BPA的吸附过程是自发进行的放热过程.  相似文献   
17.
为了评价污泥活性炭(SAC)改良黏土作为垃圾卫生填埋场衬垫防渗材料的可行性,该文通过吸附动力学试验、等温吸附平衡试验、柔性壁渗透试验,分别研究了掺量为0%、1%、3%、5%的SAC改良黏土对Cd(Ⅱ)、Cu(Ⅱ)的吸附特性以及渗透性能。试验结果表明,改良黏土对Cd(Ⅱ)或Cu(Ⅱ)的吸附以30 min内的颗粒表面吸附为主,吸附平衡时间分别为120 min或90 min。改良黏土对Cd(Ⅱ)或Cu(Ⅱ)的吸附符合Langmuir等温吸附模式。随SAC掺量由0%增加至5%,在S/L=120 g/L,Cd(Ⅱ)、Cu(Ⅱ)最大吸附量qm分别增加了25%、47%;当固液比增加到200 g/L,Cd(Ⅱ)、Cu(Ⅱ)最大吸附量qm分别增加了32%、48%。水、垃圾渗滤液2种渗透媒介下SAC改良黏土的渗透系数为1.8×10-9~1.2×10-8cm/s,均<1×10-7cm/s的防渗要求。因此,SAC改良黏土可以作为垃圾填埋场的衬垫防渗材料使用,可以有效阻滞渗滤液中重金属离子的迁移。  相似文献   
18.
为研究矿山排水污染土壤胶体对砷的吸附影响,文章以高砷污染区和背景区土壤的胶体在不同的pH、离子强度以及好氧/厌氧淹水条件下对As(Ⅴ)的吸附进行对比试验。结果表明:土壤胶体对As(Ⅴ)的吸附量随pH的增大而减少,且污染区胶体比背景区胶体对As(Ⅴ)的吸附量大;离子强度越大,胶体对As(Ⅴ)的吸附量越大,Ca(NO_3)_2浓度从0.001 mol/L增至0.1 mol/L时,污染区与背景区胶体对As(Ⅴ)的吸附量分别增加了30.57%、50.25%;厌氧淹水后的胶体对As(Ⅴ)的吸附量低于好氧条件下的胶体,解吸量较高,且厌氧淹水后污染区胶体与背景区胶体相比无明显吸附优势,而好氧条件下污染区胶体的解吸率低于背景区胶体,说明厌氧淹水后的胶体不易吸附且易释放As(Ⅴ)。因此,低p H和高离子强度以及好氧的条件有利于土壤胶体对砷的吸附。  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号