首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5760篇
  免费   957篇
  国内免费   2197篇
安全科学   678篇
废物处理   382篇
环保管理   323篇
综合类   4779篇
基础理论   1002篇
污染及防治   1037篇
评价与监测   371篇
社会与环境   124篇
灾害及防治   218篇
  2024年   153篇
  2023年   393篇
  2022年   456篇
  2021年   418篇
  2020年   348篇
  2019年   414篇
  2018年   237篇
  2017年   246篇
  2016年   307篇
  2015年   359篇
  2014年   569篇
  2013年   438篇
  2012年   485篇
  2011年   449篇
  2010年   433篇
  2009年   459篇
  2008年   434篇
  2007年   393篇
  2006年   377篇
  2005年   321篇
  2004年   319篇
  2003年   248篇
  2002年   109篇
  2001年   100篇
  2000年   105篇
  1999年   81篇
  1998年   47篇
  1997年   38篇
  1996年   35篇
  1995年   28篇
  1994年   21篇
  1993年   33篇
  1992年   23篇
  1991年   12篇
  1990年   6篇
  1989年   5篇
  1988年   9篇
  1987年   5篇
  1986年   1篇
排序方式: 共有8914条查询结果,搜索用时 15 毫秒
541.
以实际生活污水为处理对象,考察了传统进水/曝气和改良型分段进水的交替缺氧-好氧(A/O)2种运行模式对CAST工艺的快速启动及脱氮除磷性能稳定维持的影响。结果表明,传统进水/曝气运行模式下,系统达到最佳营养物去除性能所需启动时间30 d,稳定运行阶段TN平均去除80.66%,磷的去除率维持在66.30%左右;采用改良型交替运行模式,反应器达到稳定运行状态仅需18 d,系统稳定运行时TN平均去除81.36%,磷去除率稳定维持在90%以上,出水磷浓度在0.3 mg/L以下,出水水质达到国家污水综合排放标准一级A(GB8978-2002)。研究还发现,传统运行模式下,由低温引起的污泥沉降性能变差导致系统污泥严重流失,反应器几乎丧失污染物去除性能;而低温对交替运行模式下的反应器除磷性能几乎没有影响,总氮去除则因氨氮不完全硝化而大大降低。  相似文献   
542.
以壳聚糖为原料,甲醛为氨基保护剂,戊二醛为交联剂,采用反相悬浮交联法制备交联壳聚糖,再对其进行质子化改性得到质子化改性交联壳聚糖吸附剂。通过正交实验对该吸附剂的制备条件进行优化,并对其吸附水中硫酸根(SO42-)的吸附等温特性和动力学进行研究,最后对制备和吸附过程进行能谱分析(EDS)并对吸附剂进行了再生实验。实验结果表明,交联反应的优化条件为:反应温度50℃、反应时间6 h、甲醛:戊二醛:壳聚糖为4.5:0.5:3(质量比);该吸附过程符合Langmuir吸附等温模型,在25℃(298 K)下,吸附容量最大可达133.87 mg/g;吸附过程较好地符合拟二级动力学模型;EDS分析表明了交联反应、质子化改性和吸附反应均已发生;该吸附剂的再生性能良好,可以重复使用。  相似文献   
543.
以棉秆为原料,以KOH为活化剂,制备了高比表面棉秆基生物质活性炭。分析了制得的活性炭的元素组成、表面官能团、吸附能力等物化性能,探讨了浸渍比,活化温度,活化时间等工艺参数对制备活性炭得率、表面官能团、碘值、亚甲基蓝值等性能的影响,并通过静态吸附实验比较了不同条件下制备活性炭对2,4-二硝基苯酚的吸附性能,探讨了典型炭样品对2,4-二硝基苯酚的等温吸附特性。结果表明,KOH活化棉秆基生物质活性炭的表面物化性质随浸渍比、活化温度等工艺参数变化而变化,活化适宜条件为浸渍比1:3、活化温度800℃、活化时间90 min,在此条件下制得的炭样的碘值为1 251 mg/g,亚甲基蓝吸附值为478 mg/g,分别是国家一级品标准的1.25倍与3.54倍;对2,4-二硝基苯酚的Langmuir最大吸附量为747 mg/g,与Freundlich模型相比,Langmuir模型能较好地描述2,4-二硝基苯酚在炭样上的吸附行为,表明制备活性炭样品表面吸附位的能量分布较为均一。  相似文献   
544.
以氯化铁为铁源,硼氢化钠为还原剂,壳聚糖为稳定剂,采用液相还原法制备壳聚糖稳定纳米铁(CS-nZⅥ);研究了印染废水中常见助剂NaNO3、Na2SO4、NaH2PO4、K2Cr2O7、EDTA二钠盐存在下,超声波辅助CS-nZⅥ对酸性品红(AF)降解的影响。结果表明,反应15 min,0.01 g CS-nZⅥ对25 mL、100 mg/L AF的去除率高达99.9%;各种助剂的存在使得纳米铁表面不同程度失活,阻碍反应的进行,使得AF的去除率下降。NaNO3、K2Cr2O7、EDTA二钠盐与纳米铁发生反应,与AF存在明显的竞争作用。重复利用实验表明,CS-nZⅥ重复利用7次仍具有一定的反应活性。此外,CS-nZⅥ对加标(50 mg/L)实际废水中AF的去除率达到99%以上,表明CS-nZⅥ是一种潜在的环境修复材料。  相似文献   
545.
罗平  田英 《化工环保》2013,33(1):6-9
以天然膨润土为吸附剂,还原吸附处理含Cr(Ⅵ)模拟废水。实验结果表明:以(NH42FeSO4为还原剂吸附效果最佳;在还原剂加入量为理论值的0.8倍、膨润土加入量为6 g/L、吸附时间为30 min、吸附温度为30 ℃、初始Cr(Ⅵ)质量浓度为1 mg/L的条件下,Cr(Ⅵ)去除率可达99.6%,处理后模拟废水中总铬质量浓度低至0.003 mg/L。天然膨润土对Cr(Ⅵ)的还原吸附符合准二级动力学模型及Freundlich等温吸附模型。  相似文献   
546.
采用加拿大一枝黄花茎杆为原料提取蚁酸木质素,通过氧化或接枝复合的方法对蚁酸木质素进行改性,对改性产物进行了FTIR和SEM表征。实验结果表明:接枝复合改性产物中存在-CONH的接枝复合链,氧化改性产物基本保持了蚁酸木质素原来的吸收峰;采用接枝复合改性产物处理初始质量浓度为50 mg/L的亚甲基蓝废水,在废水pH 7、吸附时间4 h、改性产物加入量22 mg/mL的条件下,亚甲基蓝去除率为90.94%;采用氧化改性产物处理相同亚甲基蓝废水,在废水pH 10、吸附时间12 h、改性产物加入量22 mg/mL的条件下,亚甲基蓝去除率为81.93%。  相似文献   
547.
分别采用沸水浸泡、酸浸、碱浸和加热的方法对粉煤灰进行改性处理,利用FTIR仪和XRD仪对改性粉煤灰的成分和官能团进行了分析,并利用改性粉煤灰对模拟刚果红废水进行脱色。实验结果表明:碱改性粉煤灰中含有大量官能团,以及NaPl型沸石类物质,能够明显提高粉煤灰对刚果红的吸附性能;与活性炭相比,碱改性粉煤灰具有更高的性价比;在初始刚果红质量浓度为20mg/L、碱改性粉煤灰加入量为50g/L的条件下,废水的脱色率可达87.52%;碱改性粉煤灰对刚果红的吸附过程遵循二级反应动力学,较好地符合Langmuir等温式和Freundlich等温式。  相似文献   
548.
交联壳聚糖/沸石复合吸附剂的制备及性能   总被引:1,自引:0,他引:1       下载免费PDF全文
用沸石负载由缩水甘油基三乙基氯化铵交联的壳聚糖,制得了性能良好的交联壳聚糖/沸石复合吸附剂。研究了该吸附剂应用性能的影响因素,探讨了该吸附剂的吸附性、沉降性和重复使用性,利用FTIR仪和高倍透射电子显微镜对该吸附剂的结构进行了表征。实验结果表明:壳聚糖的交联度为0.93、交联壳聚糖与沸石的质量比为0.045时,制得的交联壳聚糖/沸石复合吸附剂对腐殖酸的去除率可达81.4%,吸附量为4.07mg/g;交联壳聚糖/沸石复合吸附剂对腐殖酸的吸附性能较沸石有显著提高,沉降时间较交联壳聚糖明显缩短;经二次洗脱后腐殖酸去除率仍可达80.2%,腐殖酸吸附量为4.01mg/g。  相似文献   
549.
采用盐析分相微萃取—高效液相色谱法同时测定水中3种含氯除草剂,建立并优化了反相离子对液相色谱条件,考察了萃取剂种类、盐析剂的种类和加入量及试样pH对萃取效果的影响。对氯苯氧乙酸、2,4-二氯苯氧乙酸和2,4-滴丁酯的质量浓度在0.1~100.0mg/L内与色谱峰面积呈良好的线性关系,相关系数不低于0.9992。平均回收率分别为96.29%、79.16%和70.21%,相对标准偏差小于5.3%。该方法操作简便、绿色环保,适合于水中含氯除草剂的测定。  相似文献   
550.
制备了改性SiO2气凝胶,考察了经不同类型、不同配比的改性剂改性的SiO2气凝胶对模拟含Fe3+废水的吸附处理效果。实验结果表明:改性SiO2气凝胶的最佳制备条件为三甲基氯硅烷(TMCS)作改性剂,V(TMCS)#x02236;V(正己烷)=1#x02236;5;当改性SiO2气凝胶加入量为75g/L、吸附时间为4h、Fe3+质量浓度为10mg/L时,模拟含Fe3+废水的Fe3+去除率为98.32%,剩余Fe3+质量浓度为0.168mg/L;采用改性SiO2气凝胶动态吸附处理流量为420mL/h、Fe3+质量浓度为100mg/L的模拟含Fe3+废水,吸附后废水中剩余Fe3+质量浓度仅为0.196mg/L。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号