首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2043篇
  免费   70篇
  国内免费   186篇
安全科学   176篇
废物处理   218篇
环保管理   287篇
综合类   1274篇
基础理论   100篇
污染及防治   144篇
评价与监测   54篇
社会与环境   30篇
灾害及防治   16篇
  2024年   15篇
  2023年   33篇
  2022年   37篇
  2021年   48篇
  2020年   45篇
  2019年   42篇
  2018年   28篇
  2017年   33篇
  2016年   64篇
  2015年   59篇
  2014年   184篇
  2013年   94篇
  2012年   142篇
  2011年   134篇
  2010年   115篇
  2009年   153篇
  2008年   130篇
  2007年   106篇
  2006年   109篇
  2005年   69篇
  2004年   113篇
  2003年   101篇
  2002年   76篇
  2001年   63篇
  2000年   46篇
  1999年   42篇
  1998年   38篇
  1997年   30篇
  1996年   28篇
  1995年   25篇
  1994年   19篇
  1993年   7篇
  1992年   8篇
  1991年   21篇
  1990年   23篇
  1989年   19篇
排序方式: 共有2299条查询结果,搜索用时 828 毫秒
941.
车用清洁燃料LPG,CNG,LNG的合理应用   总被引:5,自引:0,他引:5  
从环境保护的角度,阐述了控制汽车尾气排放的要求和措施。以及车用清洁燃料LPG、CNG、LNG的适用范围、优越性和使用的安全性,提出了城市发展燃气汽车的总体原则。  相似文献   
942.
氨挥发排放是稻田系统氮损失的主要途径.现有技术多以调控氮肥施用为削减氨挥发排放的技术手段;但由于氮肥投入基数较大且减投不能改变氨挥发途径氮损失比例,氮肥减投后的氨挥发排放仍是限制氮肥利用效率提升的瓶颈.对此,本研究选用满足环境友好和使用便捷的农业废弃物粉末和两性分子物质作为膜材料,配合氮肥施用在田面水表进行多次铺洒,研...  相似文献   
943.
农业废弃物静态高温堆肥过程中纤维素酶活性的变化   总被引:9,自引:2,他引:9  
在静态通气条件下,以养殖场鸡粪、猪粪、牛粪为材料,小麦秸秆作为调节物质.研究了堆肥过程中纤维素酶活性变化特性及其与堆肥温度的关系,旨在为农业废弃物资源化利用提供科学依据.结果表明:添加微生物菌剂后堆体升温迅速.堆肥1-2d后进入高温期,且高温腐解持续16-20d;对照处理在堆肥4-5d后进入高温期,持续时间仅为7-8d;整个堆肥过程中加菌剂处理的堆体温度高于对照.加菌剂处理在堆肥10-12d时纤维索酶活性达最高,依次为牛粪(0.642 mg·g-1·d-1)>鸡粪(0.457 mg·g-1·d-1)>猪粪(0.380 mg·g-1·d-1);对照处理推迟2d达纤维素酶活性高峰,且酶活性高峰值低于同等物料的加菌剂处理,依次为牛粪(0.491 mg·g-1·d-1)>猪粪(0.335 mg·g-1·d-1)>鸡粪(0.258 mg·g-1·d-1),整个堆肥过程中加菌剂处理平均纤维紊酶活性较对照提高了33.17%(牛粪)、20.17%(鸡粪)和12.4%(猪粪).堆肥初期堆肥温度过高不利于微生物的活动,纤维素酶活性在堆肥开始的3-4d低于初始水平.而后迅速上升.当堆肥温度等于或者低于60℃后,纤维素酶活性与有机物料温度变化间有显著正效应,对照处理两者间为线性关系,加菌剂处理两者间呈显著指数递增关系.  相似文献   
944.
这可能是有史以来最荒唐的一个绿色创意:将数以百万计的粮田转化为生产乙醇的玉米地,然后通过燃烧化石燃料来获取“乙醇”燃料,为了提炼生物燃料,浪费了更多的化石能源!与此同时,由于粮食短缺,还导致世界粮食价格不断上涨。  相似文献   
945.
对纤维类废弃物热化学催化液化反应各反应物的用量比例、反应条件进行优化,并初步测定了最优条件下液化产物的组分.结果表明,纤维类废弃物在浓硫酸/苯酚(浓硫酸的质量分数为6%)的混合催化体系中,当温度为160℃,时间为70min时的液化效果最好.气相色谱-质谱联用仪和红外光谱仪的分析结果表明,液化产物中甲基和亚甲基等基团的振动加强,以及存在麦草纤维素的单体葡萄糖的衍生物,液化反应破坏了纤维类废弃物的晶格结构,从而打破了生物利用的禁锢,使其易被微生物降解.利用液化产物进行混合菌株发酵培养,其真蛋白含量可达到30.74%;其酒精含量可达到19.0%(V/V).  相似文献   
946.
刘镇  朱玉凡  郭文凯  刘晓  陈强 《环境科学》2019,40(5):2069-2077
随着我国工业的快速发展和城市化进程的加快,化石燃料的大量使用造成了严重的二氧化硫、颗粒物和挥发性有机物(volatile organic compounds,VOCs)等大气污染.目前,对化石燃料燃烧排放挥发性有机物环境影响的研究较少,本文计算了兰州市化石燃料燃烧源排放VOCs及其相应的臭氧生成潜势(ozone formation potential,OFP)和二次有机气溶胶生成潜势(secondary organic aerosols formation potential,SOAFP),其中水泥制造业的OFP和SOAFP占比最大,分别为45. 3%、50. 9%;其次为砖瓦制造业,但其吨标煤燃烧排放VOCs的OFP和SOAFP值最高,折为吨标煤后天然气燃烧产生VOCs的O_3和SOA最小.兰州市主城区化石燃料燃烧源OFP和SOAFP主要为电力和热力的生产供应以及西固区工业企业排放VOCs的贡献,其它地区为水泥制造业、砖瓦制造业、钢铁冶炼业等高能耗的行业的贡献为主.芳香烃是化石燃料燃烧源排放VOCs中对OFP和SOAFP均贡献最大的一类物质,占比分别为40. 0%和67. 2%,并且在生成潜势贡献前10的物种中芳香烃为主要物种.与生物质燃烧源相比,化石燃料燃烧源具有较强的O_3和SOA生成能力(2. 58 t·t~(-1)和3. 16 kg·t~(-1)).  相似文献   
947.
为公正评价汽车代用燃料的能耗与环境效益,运用生命周期评价方法,研究了在燃料中分别添加不同比例的乙醇和甲酯2种生物质,带来的生命周期能耗和污染物排放变化,并对含氧生物质燃料的未来情景进行了预测分析.结果表明:乙醇代用燃料未降低化石燃料消耗,甲酯代用燃料可降低约20%的化石燃料消耗;几种配比的代用燃料均可降低石油消耗,甲酯代用燃料降低的趋势更加明显;各种代用燃料的温室气体排放都比较严重;乙醇代用燃料增加了NOx排放,而甲酯代用燃料可降低约50%的NOx排放;乙醇和甲酯的加入均能降低车用阶段的PM10排放;燃料生产阶段的SO2排放在整个生命周期中约占80%,必须严格控制;甲酯代用燃料可降低VOC排放.  相似文献   
948.
论述了汽车公害的危害性及减少汽车污染的各种综合防治方法-排气净化,革新燃烧系统及发动机等,并展望未来将采用的低污染代用燃料及低污染发动机或无污染动力源.  相似文献   
949.
庐山风景名胜旅游地生活废弃物生态足迹分析   总被引:1,自引:0,他引:1  
随着旅游业的迅猛发展,庐山风景名胜区面临着人口激增和环境破坏的双重压力,如何测量旅游发展的现状以及如何建立可持续发展的旅游系统,是庐山风景名胜区亟待解决的问题。文章结合相关领域学者的研究成果,计算了2003年庐山风景名胜区生活废弃物的生态足迹,结果表明:(1)生活废弃物人均生态足迹为0.0117751hm2,其中CO2排放的生态足迹占总量的98.20%,而污水、粪便、固体垃圾和废弃物处理设施的生态足迹很小,仅占1.80%;(2)CO2排放量为68684.99t,其中旅游交通的贡献率为55.61%,旅游住宿的贡献率为36.26%,游客和居民的贡献率为8.13%;(3)居民废弃物排放量大于游客排放量,CO2和粪便排放量是游客的2.4倍,垃圾产生量是游客的1.32倍,污水排放量是游客的1.18倍;(4)生活废弃物对风景区、九江市以及九江市以外区域的生态影响分别为45.40%、2.78%和51.82%;(5)风景区生态效用为0.5451kgCO2/元,高于全国平均水平和维持可持续发展的理想水平;(6)九寨沟、黄山和庐山生活废弃物生态足迹数据表明,旅游交通对旅游地生态环境的影响最深远,因此改变交通方式或使用环保旅游观光车是减少旅游地生活废弃物生态足迹的重要途径。  相似文献   
950.
基于EIO-LCA模型的纯电动轿车温室气体减排分析   总被引:1,自引:0,他引:1       下载免费PDF全文
纯电动轿车燃料周期的温室气体排放是否低于汽油轿车的排放仍然存在争议.为评价纯电动轿车的温室气体减排效率,此研究利用中国2007温室气体排放EIO-LCA模型分别核算了普通级纯电动轿车和汽油轿车燃料周期的温室气体排放量.结果表明纯电动轿车燃料周期的温室气体排放总量为124gCO2,e/km,汽油轿车相应的排放总量为265gCO2,e/km,纯电动轿车与汽油轿车相比,减排温室气体53%.模型计算结果还表明影响纯电动轿车温室气体排放的主要行业包括电力、热力的生产和供应业与煤炭开采和洗选业等.因此,纯电动轿车温室气体减排应通过优化一次能源结构、提高电网综合效率等方法实现.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号