首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1604篇
  免费   246篇
  国内免费   933篇
安全科学   80篇
废物处理   112篇
环保管理   136篇
综合类   1690篇
基础理论   184篇
污染及防治   363篇
评价与监测   208篇
社会与环境   4篇
灾害及防治   6篇
  2024年   73篇
  2023年   195篇
  2022年   206篇
  2021年   213篇
  2020年   157篇
  2019年   122篇
  2018年   73篇
  2017年   129篇
  2016年   79篇
  2015年   101篇
  2014年   153篇
  2013年   94篇
  2012年   108篇
  2011年   111篇
  2010年   81篇
  2009年   85篇
  2008年   75篇
  2007年   94篇
  2006年   102篇
  2005年   73篇
  2004年   65篇
  2003年   62篇
  2002年   35篇
  2001年   40篇
  2000年   33篇
  1999年   36篇
  1998年   27篇
  1997年   25篇
  1996年   24篇
  1995年   14篇
  1994年   11篇
  1993年   13篇
  1992年   19篇
  1991年   11篇
  1990年   22篇
  1989年   19篇
  1987年   2篇
  1986年   1篇
排序方式: 共有2783条查询结果,搜索用时 15 毫秒
31.
臭氧污染主要是由前体物氮氧化物(NOx)和挥发性有机物(VOC)的过量排放引起的,通过NOx/?SO2的比值可得知西安地区已经受到了光化学烟雾型污染的影响,大气中臭氧含量与NOx的含量相关性较高;西安13个站点的8小时平均浓度分布变化大体可分为单峰变化和持续递减类型,浓度主要集中在0?—?90 μg???m?3,不同站点臭氧含量相差较大;2013?—?2016年,高新西区臭氧超标天数最多,为146天,是超标天数最少的兴庆小区的2倍多。高浓度臭氧主要出现在高温度、低湿度、实时风向为东南风或南风的天气。此外,治理臭氧污染必须限制机动车尾气排放,同时研究表明来自秦岭的植物VOC对于西安臭氧浓度影响很大。  相似文献   
32.
采用半连续实验,研究中、低温条件下酵母浸出物对厌氧系统中Co、Fe溶解性能和生物有效性的改善作用.结果表明,酵母浸出物对提高纯水中和投加不同有机基质的水中溶解态Co、Fe浓度有明显效果,能显著提高低温下厌氧系统中Co、Fe的生物有效性.在15℃和35℃下,投加酵母浸出物后,水中溶解态Co、Fe浓度均有上升,其中Fe浓度升高明显.啤酒废水等含有酵母浸出物的废水对这种提升作用也有帮助.在15℃厌氧系统中移除酵母浸出物、Co、Fe之后,COD去除率由91.6%下降到58%;重新投加Co、Fe后效果有所回升,其中同时添加酵母浸出物的系统,其COD去除率回升明显,升幅达31.6%,产甲烷速率也呈上升趋势,证实了同时投加酵母浸出物和Co、Fe可有效促进低温下厌氧生物系统的处理效能.  相似文献   
33.
针对厦门"金砖会晤"空气质量保障活动,本研究选取2017年8月10日—9月10日的O3、NO2和挥发性有机物(VOCs),以及气象因子等在线观测数据,开展人为减排、副热带高压、台风等对东南沿海城市大气O3污染特征的影响研究.结果表明,研究期间厦门大气O3-8 h平均浓度为(110.0±40.6)μg·m-3.与管控前相比,无台风影响的管控I期的O3-8 h浓度上升了19.9 μg·m-3,而管控II期的O3-8 h浓度下降了27.9 μg·m-3.对于管控I期和II期,台风影响下O3-8 h浓度较无台风时段分别下降85.2 μg·m-3和8.9 μg·m-3.在排放控制和台风的共同作用下,峰会期间厦门大气O3浓度的日变化显现出"削峰填谷"的特征.另外,与管控I期相比,管控II期O3前体物VOCs浓度显著下降,其臭氧生成潜势(OFP)下降了44.6%.总之,运用区域联防联控策略,对臭氧前体物(NOx和VOCs)实施针对性减排,可有效地降低沿海城市大气O3日间最高浓度.  相似文献   
34.
于2016年在中国广东大气超级监测站,开展4个季节的VOCs长时间观测,共获得2142组有效数据,并利用HYSPLIT模型分析珠三角地区VOCs时空分布特征.结果表明,各类VOCs混合比和化学反应活性具有明显的季节变化特点.观测期间,VOCs平均浓度为(18.523±20.978)×10-9,其中,低碳烯烃和苯系物二者混合比之和仅占46%,但贡献了85%的·OH消耗速率(LOH)、82%的臭氧生成潜势(OFP)和97%的二次气溶胶生成潜势(SOAFP).观测站点主要受来自北部内陆地区气团(1#)、西部内陆地区气团(2#)、台湾海峡南端气团(3#)以及南部海洋地区气团(4#)的影响.1#气团中炔烃和苯系物的混合比占比最高,分别达到10%、37%,而3#气团中低碳烷烃的浓度水平最高,达到(8.437±5.561)×10-9.通过估算气团中VOCs的化学反应活性,可以发现,1#气团的VOCs化学反应活性最强,其对O3和SOA的生成贡献最高.1#、2#、3#和4#气团中VOCs的化学反应活性主要由苯系物和低碳烯烃贡献.  相似文献   
35.
含溴水源水臭氧处理时溴酸盐的产生与控制   总被引:2,自引:0,他引:2  
针对南方某含溴水库水(溴离子浓度15~38μg·L-1),利用连续运行实验装置研究了臭氧氧化时溴酸盐的产生条件,同时初步考察了后续生物活性炭(BAC)对溴酸盐的去除效果.研究结果表明,单独采用预臭氧方式时,在臭氧消耗量控制为2.0mg·L-1以内的条件下,溴酸离子浓度低于6 μg·L-1;而采用预臭氧与后臭氧联合处理时,在总臭氧消耗量为2.0mg·L-1的条件下,出现了溴酸离子超标(10μg·L-1)情况.长期运行结果表明,尽管新炭对溴酸离子没有去除效果,但系统连续运行3个月后,BAC上的微生物对溴酸盐具有一定的去除能力.  相似文献   
36.
江苏某污水处理厂工程总建设规模8.5万m3/d,分2期建设,其中一期工程4万m3/d,二期工程增加4.5万m3/d。污水处理采用“粗格栅及提升泵房+细格栅及曝气沉砂池+调节池+水解酸化池+AAOA工艺+膜生物反应器(MBR)+臭氧催化氧化工艺”,尾水排放执行GB 3838—2002《地表水环境质量标准》准Ⅳ类标准(CODCr,NH3-N,TP分别达到30,1.5,0.3 mg/L),其余执行GB 18918—2002《城镇污水处理厂污染物排放标准》一级A标准。  相似文献   
37.
为解决页岩气开采过程中产生的油基岩屑的资源化、无害化处理问题,采用逆流萃取+臭氧氧化联合的方法对其进行处理,并分别对逆流萃取、臭氧氧化环节的工艺参数进行了优化。结果表明,在最优条件下,经过处理后的油基岩屑的含油率可由原始的39.42%降低到0.18%,达到了GB 4284-2018中规定的处置要求,处理过程中回收的油分可重新用于配制钻井液。通过对油基岩屑固相的表征,发现其具备臭氧催化氧化催化剂的明显特征,是一种天然的臭氧催化氧化催化剂,并从反应动力学角度对臭氧氧化环节的反应特性进行了定量分析。结果表明,其满足一级反应动力学特征,反应活化能为6.194 kJ·mol~(-1)。以逆流萃取+臭氧氧化为核心的联合工艺为油基岩屑的资源化、无害化处理提供了参考。  相似文献   
38.
在外加磁场作用下,采用臭氧氧化对青岛某污水处理厂生化处理二级出水进行了处理.考察了臭氧投加量、反应时间、磁场强度对处理效果的影响.经过多次试验得到的最佳运行参数为:臭氧投加量3.5 mg/L;反应时间10 min;磁场强度3 000Gs.外加磁场提高了臭氧氧化的效率,缩短了反应时间.  相似文献   
39.
微量金属元素及其配合物对厨余垃圾甲烷发酵的影响   总被引:4,自引:0,他引:4  
生物可利用的微量金属元素不仅能够保证污染物以最大的速率转化,而且还可以使某些特殊的转化得以发生,并提高微生物对有毒污染物质的耐受能力。在研究厨余垃圾总固体浓度(total solid, TS)、接种量和C/N比对厨余垃圾厌氧发酵影响的基础上,重点探讨微量金属元素钴及其配合物丝氨酸对厨余垃圾厌氧发酵甲烷产量及关键酶含量的影响。结果表明,当TS为0.5%、接种污泥量为100 mL/L和C/N比为20∶1时,厨余垃圾厌氧发酵的甲烷产率较高,为367 mL/g COD;添加2 μmol/L的微量金属元素钴-配合物丝氨酸时,甲烷产率则提高到432 mL/g COD,相应地,辅酶M的含量由空白实验的41.21 μmol/g VSS提高到54.64 μmol/g VSS,辅酶F420的含量由0.31 μmol/g VSS提高到0.48 μmol/g VSS。  相似文献   
40.
《化工环保》2008,28(6)
该发明涉及水处理领域中活性碳纤维-臭氧氧化降解水中聚氧乙烯脂肪醇醚类的方法。技术方案是对预处理后的原水按200~800mg/L加入量添加絮凝剂,将废水中的固体悬浮物絮凝、沉降、分离,送入循环的反应器;反应器底部设置有与臭氧发生器连接的布气板,布气板上部设置单层或多层经过改性的活性碳纤维;反应器内活性碳纤维加入量为10—50g/L,臭氧气体质量浓度为3~6mg/L,流量为0.12~0.50m^3/h,处理时间为10~90min,反应温度控制在22—45℃,调节废水的pH为碱性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号