首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5311篇
  免费   515篇
  国内免费   1126篇
安全科学   223篇
废物处理   171篇
环保管理   829篇
综合类   4510篇
基础理论   347篇
污染及防治   354篇
评价与监测   354篇
社会与环境   140篇
灾害及防治   24篇
  2024年   57篇
  2023年   188篇
  2022年   213篇
  2021年   291篇
  2020年   254篇
  2019年   244篇
  2018年   211篇
  2017年   194篇
  2016年   260篇
  2015年   278篇
  2014年   550篇
  2013年   346篇
  2012年   392篇
  2011年   367篇
  2010年   282篇
  2009年   257篇
  2008年   309篇
  2007年   299篇
  2006年   213篇
  2005年   220篇
  2004年   159篇
  2003年   226篇
  2002年   164篇
  2001年   182篇
  2000年   141篇
  1999年   124篇
  1998年   111篇
  1997年   68篇
  1996年   80篇
  1995年   51篇
  1994年   63篇
  1993年   42篇
  1992年   39篇
  1991年   22篇
  1990年   32篇
  1989年   23篇
排序方式: 共有6952条查询结果,搜索用时 15 毫秒
871.
天津隧道机动车VOCs污染特征与排放因子   总被引:6,自引:6,他引:0  
应用隧道测试方法在天津市五经路隧道于工作日和非工作日对机动车挥发性有机物(VOCs)污染特征及排放因子(EFs)进行研究,采用3.2 L真空采样罐采集隧道内气体样品,应用气相色谱-质谱联用仪(GC-MS)对罐内VOCs组分进行分析,得到99种组分的定量结果.对VOCs浓度水平与变化特征、EFs进行了分析,计算隧道内VOCs的臭氧生成潜势(OFPs)和二次有机气溶胶生成潜势(SOAFPs),并与已发表的研究数据进行了对比.结果表明,隧道入口VOCs平均浓度为(190.85±51.15)μg·m~(-3),中点平均浓度为(257.44±62.02)μg·m~(-3).隧道总排放因子为(45.12±10.97) mg·(km·辆)-1,烷烃、烯烃、炔烃、芳香烃、卤代烃和含氧VOCs(OVOCs)的EFs分别为(22.79±7.15)、(5.04±1.20)、(0.78±0.34)、(9.86±2.81)、(0.26±0.17)和(6.25±2.27) mg·(km·辆)-1,与2009年测试结果相比下降明显.其中,异戊烷、甲苯、乙烯、甲基叔丁基醚(MTBE)和乙烷是机动车排放VOCs中排放因子较高的组分;甲基叔丁基醚/苯(MTBE/B)、甲基叔丁基醚/甲苯(MTBE/T)比值分别为1.07和0.77,说明蒸发排放对机动车排放VOCs的贡献不可忽视.隧道内VOCs的OFPs和SOAFPs分别为(145.50±37.85) mg·(km·辆)-1和(43.87±12.75) mg·(km·辆)-1,较2009年天津测试结果分别降低94.23%和90.88%,OFPs和SOAFPs的锐减与排放标准加严和油品升级密切相关.  相似文献   
872.
生物质炭对华北平原4种典型土壤N2O排放的影响   总被引:1,自引:0,他引:1  
张秀玲  孙赟  张水清  岳克  曹红亮  林杉 《环境科学》2019,40(11):5173-5181
生物质炭作为一种新型的土壤改良剂,在降低土壤温室气体排放方面发挥着重要作用.为明确生物质炭对冬小麦苗期土壤N_2O排放的影响,以华北平原的4种典型土壤(水稻土、砂姜黑土、褐土和潮土)为研究对象,进行田间试验,设置了4个处理:对照(CK)、单施化肥(NPK)、单施生物质炭(BC)和化肥与生物质炭配施(NPK+BC).结果表明,单施化肥显著增加了4种土壤N_2O排放,与对照相比,水稻土、砂姜黑土、褐土和潮土N_2O排放分别增加了314%、116%、240%和282%.添加生物质炭对华北平原4种土壤N_2O排放影响存在差异,与CK相比,单施生物质炭水稻土、褐土N_2O排放显著增加了72. 4%和50. 9%,而砂姜黑土和潮土BC与CK处理无显著差异.与NPK相比,生物质炭与化肥配施显著降低了4种土壤N_2O排放.添加生物质炭提高了4种土壤pH,其中,初始pH最低的水稻土,受生物质炭影响较显著,施肥则降低了4种土壤pH.砂姜黑土、褐土和潮土施肥处理N_2O排放通量均与铵态氮含量呈显著正相关,水稻土和砂姜黑土单施生物质炭处理N_2O排放通量与硝态氮含量呈显著正相关.  相似文献   
873.
游璟  倪九派  黄容  张洋  谢德体 《环境科学》2019,40(10):4708-4717
以柑橘/大球盖菇套作模式为研究对象,利用秸秆作为大球盖菇的培养基原料,通过原位试验,连续监测大球盖菇生长期内,不同秸秆还田量(半量、全量和倍量)下土壤CO_2排放规律,并进一步对比栽培大球盖菇(HSM、ASM和DSM)和未栽培大球盖菇(HS、AS和DS)处理下土壤CO_2排放量变化及其影响因素,结合大球盖菇产量及土壤碳排放效率,分析不同秸秆还田量所产生的环境及经济效益,为合理利用柑橘园林下土地提供理论依据.结果表明:①秸秆还田处理的土壤CO_2累积排放量均高于常规种植(CK),随着秸秆还田量的增加呈增加趋势;且栽培大球盖菇处理的土壤CO_2累积排放量大于未栽培大球盖菇,表现为:DSM(52. 09 t·hm-2) ASM(41. 10 t·hm-2) HSM(33. 20 t·hm-2) DS(27. 15 t·hm-2) AS(25. 34t·hm-2) HS(18. 94 t·hm-2) CK(12. 16 t·hm-2);其中,倍量秸秆填埋还田+栽培大球盖菇(DSM)处理的土壤CO_2累积排放量增加最为显著,较CK增加了328. 37%;②对于栽培了大球盖菇的处理,土壤CO_2排放量最大时段均集中在大球盖菇菌丝生长期,其次为出菇后和出菇期;其中DSM处理在菌丝生长期的土壤CO_2累积排放量占其总累积排放量的43. 27%,其次为全量秸秆填埋还田+栽培大球盖菇(ASM,42. 63%)和半量秸秆填埋还田+栽培大球盖菇(HSM,40. 57%);③栽培大球盖菇处理降低了温度敏感系数Q10; 5cm土壤温度能解释27%~71%的土壤CO_2排放速率变化(P 0. 01),而土壤体积含水量单因子对土壤CO_2排放速率不存在显著影响;但双因子拟合发现,5 cm土壤温度和体积含水量可以解释土壤CO_2排放速率变化的36%~82%;④对于栽培了大球盖菇的处理,各处理产量分别为:DSM(49. 7 t·hm-2) ASM(47. 0 t·hm-2) HSM(23. 3 t·hm-2),其中ASM的土壤碳排放效率最高(CEE=1. 14).综上,柑橘/大球盖菇套作模式短期内会显著促进土壤CO_2排放,但同时也提高了柑橘园综合经济效益,其中全量秸秆还田能较好地协调其产生的经济及环境效益.  相似文献   
874.
以18辆轻型汽油车(LDGVs)为研究对象,利用底盘测功机搭建挥发性有机物(VOCs)采样系统.利用气相色谱-质谱仪(GC-MS)和高效液相色谱(HPLC)识别了匀速25 km·h~(-1)时尾气VOCs化学成分谱和排放因子,并在分析时考虑了排放标准、行驶工况和车辆属性等因素的影响.结果表明,轻型汽油车低速匀速工况下尾气组成以烷烃(40.8%,C_5~C_7烷烃较多)为主,其次是芳香烃(29.5%)和含氧VOCs(26.0%),烯炔烃(3.6%)和卤代烃(0.1%)较少.其中,甲醛、异戊烷、甲苯、苯、间/对二甲苯、丙酮、2-甲基戊烷、正戊烷、1,2,4-三甲基苯和壬醛是比例最高的物质(52.01%).低速匀速行驶中生成了比例更低的烯烃和比例更高的C_5~C_7烷烃和OVOCs.排放标准为国III、IV和V的轻型汽油车在低速匀速工况下,VOCs排放因子分别为(50.12±46.83)、(40.26±31.15)和(3.25±0.65) mg·km~(-1).国IV到国V车的烷烃、烯炔烃、芳香烃、卤代烃和总VOCs降幅均超过88%,而OVOCs降幅只有约55%,说明OVOCs在国V车的排放富集程度更高.总体来讲,国V车排放的VOCs反应活性约为国IV车排放的VOCs反应活性的11%.车辆属性对VOCs排放的影响表现为:年份、里程和排量的增加会促进VOCs排放的整体增加,而基准质量对VOCs排放的影响相对较小.  相似文献   
875.
南京地区一次臭氧污染过程的行业排放贡献研究   总被引:1,自引:0,他引:1  
采用WRF-CHEM模式对南京地区春季一次臭氧(O_3)污染过程进行了模拟及行业排放贡献分析.此次O_3污染过程发生在2015年5月22—26日,南京地区一直处于地面高压控制的晴好天气之下,并于25日达到O_3污染的峰值.模拟与观测的一致性指数IOA达到0.89,表征本次O_3污染过程的模拟与观测结果的一致性较高.通过5类排放源(工业源、农业源、居住源、交通源、生物源)的敏感性试验,探究各行业排放源中O_3前体物对近地面O_3浓度的相对贡献.结果表明工业源在白天为持续正贡献,且在午后16:00时达到峰值,而交通源、居住源和农业源的贡献随气温的升高在白天由负贡献转为正贡献,并在18:00时左右达到峰值.在夜晚,O_3则主要通过交通源排放的大量NO进行滴定消耗.在高O_3浓度(≥200μg·m~(-3))时,各人为排放源均为正贡献,工业源的贡献最大,达到50μg·m~(-3),在低O_3浓度(200μg·m~(-3))时,交通源、居住源和农业源呈负贡献.生物源在人为排放源主导的南京城区O_3污染过程中的贡献几乎为零.考虑到O_3生成机制的复杂性,对于南京地区,减少工业源排放是控制O_3污染的关键.  相似文献   
876.
选取冀南城市群为研究区,基于2012~2016年VⅡRS卫星数据热异常点产品,结合工业能源消耗量、工业废气排放量以及空气质量数据,利用统计分析和空间分析探讨热异常点辐射强度的变化规律及其与工业能源消耗、污染物排放之间的关系.结果表明,热异常点的辐射强度可以表征工业能源消耗量,并间接反映工业生产规模与污染排放水平.辐射强度越大,工业生产规模越大.辐射强度与工业SO2排放量呈较高的正相关,与NOx排放量呈中度线性相关.PM10、SO2及NO2浓度与工业能源消耗和热异常点辐射强度灰色关联度均较高.工业生产活动产生的污染物中,颗粒物对大气污染的贡献最高,其次为SO2.2012~2016年,邯郸、石家庄以及廊坊的工业生产空间分布呈逐年收缩聚集的趋势,保定和沧州的工业生产分别出现向南、向西迁移趋势.  相似文献   
877.
选取中国6大城市群中的11座代表性城市为研究区域,将监测站点划分为城区、郊区和乡村站,进而分析各城市间PM2.5浓度的城乡差异规律.结果表明,同一城市群各城市之间,或同一城市的城区、郊区、乡村站间PM2.5日变化皆较为相似.京津冀和长三角地区的城市城区PM2.5浓度最高,高于郊区7.8%~9.7%,高于乡村11.3%~16.9%,而粤港澳大湾区和内陆城市群(成渝、长江中游、关中平原城市群)的城市郊区PM2.5浓度最高,高于城区2.6%~11.2%,高于乡村16.7%~26.5%.各城市间城乡PM2.5浓度差值的日变化规律不尽相同,可呈单峰(如上海)或双峰(如杭州)变化,极值可出现在白天(如广州),亦可在夜间(如深圳).PM2.5的排放与传输扩散共同对11城市城乡PM2.5浓度分布产生影响.  相似文献   
878.
选取嘉兴市秀洲区和海宁市为研究对象,以乡镇区划为研究单元,采用综合源强估算法和GIS软件,对处理设施的氨氮(NH3-N)、总磷(TP)、化学需氧量(COD)排放强度进行定量估算和空间分析.结果表明,秀洲区处理设施的NH3-N和COD排放强度高于海宁市,而TP排放强度与海宁市差不多.秀洲区内,洪合镇各污染物的排放强度均最高;海宁市内,盐官镇NH3-N排放强度最高,许村镇TP和COD排放强度最高.采用因子分析法和加权指数法计算排污权重,再结合生态敏感性评价和环境功能区划,筛选出运维和监管优先控制区.秀洲区内,洪合镇、王江泾镇、油车港镇被划分为优先控制区,该优先控制区内处理设施数量占比27.87%,排污权重占比72.42%,通过重点监管17.66%的设施,可监管秀洲区59.98%的污染物排放.海宁市内,长安镇、许村镇、海洲街道、盐官镇、袁花镇被划分为优先控制区,该优先控制区内设施数量占比69.10%,排污权重占比71.23%,通过重点监管16.85%的设施,可监管海宁市43.54%的污染物排放.研究结果可为提高设施的运维监管效率提供技术支撑.  相似文献   
879.
国内外建筑施工扬尘排放因子测试方法概述   总被引:1,自引:1,他引:0       下载免费PDF全文
大气颗粒物来源解析技术包括源清单法、源模型法、受体模型法及组合方法,源模式法解析结果受源清单影响较大,导致源模型法和受体模型法的结果存在较大差异,尤其是建筑施工扬尘的贡献存在较大争议。对比分析了国内外建筑施工扬尘排放因子测试方法,结果发现:1)国内外现场测试建筑施工扬尘排放因子的方法较多,但不同测试方法比较的案例较少; 2)国内外建筑施工扬尘排放因子差异较大,缺乏造成差异原因的深入分析; 3)建议在某一典型建筑工地开展施工扬尘排放因子测试方法对比研究,确定最佳的测试方法,并在不同地区、不同季节和不同施工阶段开展排放因子研究,为编制建筑施工扬尘排放清单提供技术支撑。  相似文献   
880.
采用智能便携式采样器,对钢铁企业生产工艺中的烧结、焦化、炼铁和炼钢4种单元生产工序外排的烟尘进行采样,同步在企业厂区及相邻2个周边村庄采集了3种不同粒径颗粒物(TSP、PM_(10)、PM_(2.5)),运用气相色谱-质谱(GCMS)联用技术分析了7种指示性PCBs和12种类二噁英类PCBs(记作DL-PCBs)质量浓度。分析结果发现:不同生产工序,PCBs的排放特征不同,焦化工序排放的Σ_7PCBs和Σ_(12)DL-PCBs质量浓度最高,分别为647. 85,1422. 62 ng/m~3,其次为烧结工序,Σ_7PCBs质量浓度最低的是炼铁工序,Σ_(12)DL-PCBs质量浓度最低的是炼钢工序。检出的PCBs单体中,质量浓度最高的单体出现在不同的生产工序,烧结工序是PCB81,焦化工序是PCB123,炼铁工序是PCB167,炼钢工序是PCB52。钢铁企业厂址及周边的2个采样点不同粒径颗粒物载带的PCBs与4个工序外排烟尘中检出的单体数目和浓度高低顺序基本一致,说明该地区周边环境空气中PCBs的来源在一定程度上受到钢铁企业外排烟气的影响。颗粒物粒径越细,其所载带的Σ_7PCBs和Σ_(12)DL-PCBs质量浓度越高。由主成分分析可知:钢铁企业周围环境空气颗粒物中PCBs主要来自焦化和烧结工序。钢铁企业内以及周边环境空气颗粒物中的Σ_(12)PCBs的毒性当量值略高于已有报道,存在潜在风险。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号