首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1116篇
  免费   120篇
  国内免费   508篇
安全科学   84篇
废物处理   80篇
环保管理   62篇
综合类   969篇
基础理论   264篇
污染及防治   206篇
评价与监测   70篇
灾害及防治   9篇
  2024年   15篇
  2023年   25篇
  2022年   55篇
  2021年   67篇
  2020年   47篇
  2019年   56篇
  2018年   26篇
  2017年   35篇
  2016年   30篇
  2015年   52篇
  2014年   87篇
  2013年   76篇
  2012年   60篇
  2011年   95篇
  2010年   64篇
  2009年   82篇
  2008年   85篇
  2007年   92篇
  2006年   81篇
  2005年   71篇
  2004年   70篇
  2003年   52篇
  2002年   42篇
  2001年   39篇
  2000年   48篇
  1999年   32篇
  1998年   40篇
  1997年   35篇
  1996年   33篇
  1995年   33篇
  1994年   34篇
  1993年   12篇
  1992年   22篇
  1991年   14篇
  1990年   16篇
  1989年   18篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
排序方式: 共有1744条查询结果,搜索用时 734 毫秒
991.
李烨  刘菲  傅海霞  董志英 《环境工程》2012,(Z2):504-509
通过实验研究了铁还原环境下四氯乙烯(PCE)的生物降解。以醋酸为共代谢基质,在20℃时,PCE可以顺序脱氯为TCE和DCEs。反应速率常数为0.2489d-1,半衰期为2.78d。在实验的第1天和第10天分别检测到了TCE和DCEs。TCE最高浓度为358.98nmol/L,是最主要的反应产物。碳平衡为88.7%~109.3%。在13d的实验周期中,微生物的数量和活性都有所增加。同时研究了不同的影响因素,如低温、不同pH和电子受体对PCE生物降解的影响。结果表明,在12℃时,PCE可以脱氯为TCE,半衰期为6.45d,降解速率为0.1075d-1,较20℃时的降解速率要低。脱氯的最佳pH值在7.0左右,较高和较低的pH值均会抑制脱氯微生物的活性。加入不同电子受体NO3-和SO42-,PCE脱氯受到不同程度的抑制,前者可能是由于NO3-是相对强的氧化剂,造成微环境中的氧化还原电位升高;后者则可能是SO42-的存在,会抑制脱氯菌的作用。  相似文献   
992.
应用HPLC-MSn方法,研究了邻苯二甲酸丁基苄酯在小鼠尿液中的代谢产物,并对尿中推测的代谢物和标准品分别进行HPLC-UV和二级全扫描质谱(MS2)分析,结果在尿中发现了6个代谢产物,分别为邻苯二甲酸、马脲酸、邻苯二甲酸单丁酯、邻苯二甲酸苄酯、邻苯二甲酸单丁酯葡萄糖醛酸结合物及邻苯二甲酸苄酯葡萄糖醛酸结合物.推断环境激素邻苯二甲酸丁基苄酯在小鼠体内的代谢途径为原形首先水解生成邻苯二甲酸单丁酯、邻苯二甲酸苄酯、邻苯二甲酸,部分邻苯二甲酸发生脱羧反应生成苯甲酸,苯甲酸再与内源性物质甘氨酸结合成马脲酸,邻苯二甲酸单丁酯、邻苯二甲酸苄酯和内源性β-D-葡萄糖醛酸结合,生成水溶性较大的邻苯二甲酸单丁酯葡萄糖醛酸结合物和邻苯二甲酸苄酯葡萄糖醛酸结合物.  相似文献   
993.
降解2-氯酚的厌氧污泥驯化及降解性能评价   总被引:1,自引:0,他引:1       下载免费PDF全文
以降解2-氯酚(2-CP)的厌氧污泥为研究对象,探讨驯化过程对污泥降解能力的影响,并采用多种指标全面评价驯化后污泥的降解特性.结果表明,经68d驯化,污泥对2000mg/LCOD和25mg/L2-CP的去除率均>95%,2-CP的降解速率达0.3mg/(L·h).对于浓度<140mg/L的2-CP,降解速率随浓度增加而升高;浓度为200~300mg/L的2-CP,污泥能较快恢复降解能力,但不耐受600mg/L的2-CP.2-CP厌氧降解产物包括苯酚、苯甲酸、正丁酸、乙酸、H2、CO2和CH4.氯酚脱氯是整个降解环节中的限速步骤,速率仅为0.1mg/(gVSS·d).  相似文献   
994.
邻氯酚厌氧降解血清瓶试验的误差分析   总被引:5,自引:0,他引:5  
采用自制的厌氧血清瓶,以2-氯酚(以下简称2-CP)为主要降解基质,研究了各种可能因素对试验试验结果的影响,并进行了误差分析。结果表明氮气吹脱、定容过程和滤膜过滤等试验操作所引起的试验误差很小,而基质挥发、污泥吸附导致的水样中2-氯酚浓度的降低量远小于微生物的降解量。因此利用血清瓶对2-氯酚进行厌氧生物降解的试验研究,可以较好地反应厌氧生物降解的基本规律,结果准确可靠,重现性好。  相似文献   
995.
研究了2-氯-4-硝基苯胺、4-氯-3-硝基苯胺,2-氯-5-硝基苯胺对斑马鱼的急性毒性,96hLC50分别为6.99,2.58,8.63mg/L,为阐明氯化硝基苯胺类化合物对水生生物抗氧化酶的早期影响,将鲫鱼暴露于梯度浓度的2-氯-4-硝基苯胺,4-氯-3-硝基苯胺,2-氯-5-硝基苯胺中,研究鲫鱼血清SOD和GSH-PX活性短期(48h)内的变化,研究结果表明,在实验设置浓度下,随着暴露浓度升高,与空白对照组相比,3种化合物对SOD活性表现为先轻微激活后抑制,对GSH-PX活性先激活再抑制后有所回升,表明3种化合物对鲫鱼血清SOD和GSH-PX活性有显著影响,与3种化合物96hLC50相比,引起生化效应的暴露浓度明显降低,且反应快速,可考虑SOD和GSH-PX酶活性相结合作为该类化合物对水环境污染胁迫的敏感生物指示物。  相似文献   
996.
邻氯苯酚的电化学处理技术   总被引:2,自引:0,他引:2       下载免费PDF全文
以邻氯苯酚为模型污染物探讨了直接阳极氧化,紫外光辐射联合阳极氧化和阴极还原3种电化学技术用于难生化污染物的削减.直接阳极氧化更适于有机物降解的预处理.提高电流虽能增加邻氯苯酚及其废水COD的去除速率,电流效率却降低.联合紫外光化学氧化后,光电一体化工艺存在协同效应,通过动力学参数计算了协同作用的增加因子.在阴极还原工艺中,通过合理的电化学反应器设计使得邻氯苯酚的氧化效率较直接阳极氧化有所提高.通过色谱分析简单揭示了邻氯苯酚在阳极氧化和阴极还原中的不同降解路径.  相似文献   
997.
含五氯酚废水的生物降解性和微生物毒性试验   总被引:14,自引:3,他引:14  
模拟中温厌氧消化反应设备条件,以葡萄糖为共基质,测定了五氯酚的产甲烷毒性及其废水的厌氧可生物降解性.测定条件:COD1100~1200m g/L,pH7.2~7.4,COD∶TVSS为0.8 左右,接种污泥未驯化,其产甲烷活性CH4/VSS为240m l/g.试验结果表明,五氯酚是一种对产甲烷活性抑制性较强的物质,当投加浓度小于5m g/L时产生中度抑制,大于10m g/L产生重度抑制,抑制程度与投加浓度大小呈正相关;产甲烷活性被抑制50% 的五氯酚浓度约为6m g/L.五氯酚对产酸阶段抑制程度很小,含不同浓度的五氯酚废水COD转化率稳定在70% 左右,但COD不能完全矿化,导致以丙酸、乙酸为主的有机酸积累,无丁酸积累.五氯酚去除率可达70% ~80% .用反应终点的甲烷转化率、酸化率、残余挥发酸百分率等特性参数能较好地表征反应体系产酸菌与产甲烷菌的活性及其被抑制情况  相似文献   
998.
五氟氯乙烷的钯催化法加氢脱氯反应研究   总被引:8,自引:0,他引:8       下载免费PDF全文
催化加氢脱氯是有选择性地去除氟里昂(CFCs)分子中对臭氧层有破坏作用的氯原子,将其转化成可能的替代物氢氟烃(HFCs).以活性炭为载体的负载型钯催化剂对五氟氯乙烷的选择性加氢脱氯反应具有良好的催化活性,色谱分析表明,其生成产物五氟乙烷的选择性高达99%.活性炭载体经浓硝酸氧化处理后能明显提高负载型钯催化剂的催化活性和催化稳定性.这归因于载体表面生成了较多的表面含氧官能团,有利于提高载体表面Pd的分散度,影响了催化性能.进一步地动力学研究得出,五氟氯乙烷选择性加氢脱氯反应对H2和五氟氯乙烷的表观反应级数分别为1/4和1/2.   相似文献   
999.
广州市环境中优控有机污染物初步研究   总被引:6,自引:0,他引:6  
本文报导了广州市及邻区一些气溶胶、污水、饮用水源水、饮用水、底泥等环境中的有机污染物研究,结果表明,邻苯二甲酸酯类、多环芳烃、酚类以及氯代芳烃是广州市环境中的重要优先控制有机污染物,并讨论了可能的污染源。  相似文献   
1000.
金属催化还原技术对p-二氯苯的脱氯   总被引:9,自引:0,他引:9  
研究了Pd/Fe双金属体系对p-二氯苯(p-DCB)的快速催化还原脱氯处理. 结果表明, 在Pd的催化作用下,零价Fe对p-DCB具有较好的还原脱氯效率. 当Pd/Fe双金属的钯化率为0.02%,催化还原剂的用量为4g/75mL,反应90min p-DCB脱氯率达到90%以上;p-DCB的脱氯效率与溶液初始pH值、反应温度、钯化率、Pd/Fe投加量等因素有关;p-DCB在催化还原脱氯过程中先生成氯苯,而后继续脱氯生成苯.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号