首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1222篇
  免费   145篇
  国内免费   697篇
安全科学   97篇
废物处理   96篇
环保管理   67篇
综合类   1135篇
基础理论   341篇
污染及防治   285篇
评价与监测   26篇
社会与环境   9篇
灾害及防治   8篇
  2024年   20篇
  2023年   42篇
  2022年   60篇
  2021年   79篇
  2020年   68篇
  2019年   71篇
  2018年   45篇
  2017年   66篇
  2016年   52篇
  2015年   91篇
  2014年   130篇
  2013年   92篇
  2012年   75篇
  2011年   121篇
  2010年   105篇
  2009年   102篇
  2008年   110篇
  2007年   95篇
  2006年   98篇
  2005年   94篇
  2004年   96篇
  2003年   62篇
  2002年   61篇
  2001年   41篇
  2000年   30篇
  1999年   29篇
  1998年   22篇
  1997年   17篇
  1996年   13篇
  1995年   10篇
  1994年   23篇
  1993年   18篇
  1992年   8篇
  1991年   6篇
  1990年   6篇
  1989年   5篇
  1987年   1篇
排序方式: 共有2064条查询结果,搜索用时 15 毫秒
111.
沉水植物和螺类是生物防治有害水华的重要手段,然而目前关于这两者对有害蓝藻的协同抑制效率和作用机制尚不清楚.本研究利用沉水植物金鱼藻与铜锈环棱螺在实验室内探究草-螺组合系统对铜绿微囊藻(Microcystis aeruginosa)生长的抑制效果.结果表明,金鱼藻组、环棱螺组及草-螺组合系统均显著降低了体系内蓝藻Chl-a浓度、总Chl-a浓度和铜绿微囊藻密度,与初始相比,蓝藻活体Chl-a浓度分别减少99.24%、100.00%和98.61%,铜绿微囊藻密度分别减少98.64%、86.44%和97.71%.草-螺共培养和金鱼藻单独培养均可以显著抑制铜绿微囊藻生长,效果相似,而环棱螺单独培养可以使蓝藻Chl-a浓度和光曲线参数值降为零,同时使得微囊藻细胞全部失活.金鱼藻与环棱螺都可以降低铜绿微囊藻光合活性,草-螺共培养系统可以最大程度降低藻类整体的生长潜能.研究发现,草-螺耦合系统对铜绿微囊藻的总体抑制效率略低于两者单独抑制效率,表明金鱼藻和环棱螺在此过程中存在微弱的拮抗作用,但由于草-螺耦合系统的抑制成效同样显著,且抑制途径更多样,同时能更好地维持水体营养盐平衡.在实践过程中建议加强沉...  相似文献   
112.
采用活性碳纤维处理腐植酸模拟废水,通过静态吸附和动态吸附的研究,测定吸附等温线和动态吸附曲线;研究不同温度、不同活性炭纤维、不同pH值和流速对处理效果的影响。  相似文献   
113.
张聪  郭振华  马影利  郭强 《化工环保》2018,38(3):275-281
通过水热合成法和液相沉积法制备g-C_3N_4/C@Bi_2MoO_6复合光催化剂,并采用X射线衍射、扫描电子显微镜、氮气吸脱附、紫外-可见漫反射等技术对其进行表征。研究了可见光下g-C_3N_4/C@Bi_2MoO_6催化降解罗丹明B(Rh B)的影响因素,并对其光催化反应机理进行初步探讨。实验结果表明:g-C_3N_4掺杂量为60%(w)时g-C_3N_4/C@Bi_2MoO_6的光催化活性最高;在60%g-C_3N_4/C@Bi_2MoO_6的投加量为1.00 g/L、初始Rh B质量浓度为2.50 mg/L、可见光照射150 min的条件下,Rh B的降解率达到97.90%;在g-C_3N_4/C@Bi_2MoO_6光催化降解体系中,h~+和·O_2~-是主要活性物种。  相似文献   
114.
周绍杰  刘明照  钱翌 《化工环保》2017,37(2):183-188
以粉煤灰(FA)为原料,采用共沉淀法制备了层状双金属氢氧化物(LDH)和层状金属氧化物(LMO,也称LDO),并采用XRD和BET技术进行了表征。比较了FA、LDH、LMO对活性红X-3B染料(X-3B)的吸附效果;考察了LMO吸附X-3B的影响因素,并探讨了吸附机理。XRD表征结果表明,LMO在吸附X-3B后重新恢复LDH层状结构。BET表征结果表明,LMO的比表面积大于LDH。吸附实验结果表明,3种吸附剂对X-3B吸附效果的优劣顺序为:LMOLDHFA;在初始X-3B质量浓度为50 mg/L、LMO投加量为2.0 g/L、吸附温度为25℃、吸附pH为7、吸附时间为30 min的条件下,X-3B去除率可达98.1%;LMO对X-3B的吸附符合Langmuir等温吸附方程,饱和吸附量为129.53 mg/g,且吸附过程可用准二级动力学方程描述。  相似文献   
115.
以TiO2为载体,选取过渡金属元素Mn为活性组分,稀土金属元素Ce为活性助剂,采用分步共混法制备了Mn-Ce/TiO2催化剂(活性组分负载量16%),系统研究了TiO2载体的晶型和晶粒尺寸对催化剂脱硝活性的影响。实验结果表明:分别以锐钛矿型和金红石型TiO2为载体制备的催化剂,其低温脱硝活性相差不大,活性组分均以无定型态高度分散于载体中,以金红石型TiO2为载体制备的催化剂中部分TiO2转变为锐钛矿型;以不同晶粒尺寸TiO2载体制备的催化剂的低温脱硝活性相差较大,比表面积较大、晶粒尺寸较小的TiO2载体制备的催化剂,其脱硝活性低于晶粒尺寸较大的TiO2载体制备的催化剂。  相似文献   
116.
Ni2 +对活性污泥活性及群落多样性的影响   总被引:1,自引:0,他引:1  
通过检测活性污泥的电子传递体系活性以及生物多样性,研究Ni2+对活性污泥微生物活性及群落多样性的影响。结果表明:与对照系统相比,5 mg/L的Ni2+对2,3,5-triphenylteltrazolium chloride(TTC-ETS)活性未产生显著的影响;但当Ni2+的浓度进一步增大到10、20和40 mg/L后,其对序批式反应器内活性污泥TTC-ETS活性的抑制率分别达到(36.79±11.14)%、(55.88±13.90)%和(70.97±6.78)%。低浓度Ni2+能增强活性污泥微生物对碳源的利用,但高于10 mg/L的Ni2+则显著抑制了活性污泥微生物对碳源的利用。各个SBR系统中微生物群落最常见的物种相近,物种丰富度和均一性则均有所不同,其中群落物种丰富度随着Ni2+浓度的增加而逐渐减小。TTC-ETS活性、平均每孔颜色变化率、Shannon指数和Simpson指数,与Ni2+的胁迫浓度之间的显著相关性表明,它们均可有效地表征Ni2+胁迫对活性污泥微生物活性及群落多样性的影响程度。  相似文献   
117.
以白碳黑、硅灰、硅藻土和硅胶筛选硅质原料,并与钙质原料电石渣制备了水化硅酸钙。借助XRF、BET、FTIR等表征手段,通过多次重复除磷实验,研究了硅质原料特性对水化硅酸钙回收磷性能的影响。结果表明,白碳黑具有极高的反应活性,因此可作为制备具有磷回收特性的水化硅酸钙的硅质原料。结合XRD等表征发现,白碳黑的有效利用率是影响水化硅酸钙回收磷性能的关键,该利用率取决于白碳黑与电石渣的摩尔配比以及水热反应温度。当电石渣与白碳黑的摩尔比为1.6:1,反应温度为170℃时,白碳黑具有最佳的利用效率。该条件制备的水化硅酸钙可作为晶种,在其表面结晶形成羟基磷灰石,从而达到磷回收的目的,磷回收后固体物质中的磷含量为19.05%。  相似文献   
118.
将碳纳米管固定化制成多孔疏水性导电薄膜构建电化学阴极还原体系,实现过氧化氢在阴极的原位产生。电极特性研究表明,电极在较宽的电压范围内均具有较好的活性。考察了阴极电位、电极成分、氧气流量和电解质浓度对过氧化氢原位产生的影响,在优化条件下经过120 min后过氧化氢达到66.17 mg/L,并探讨过氧化氢原位产生的机理。在此基础上考察原位过氧化氢氧化工艺下对亚甲基蓝的脱色效果,并分析其脱色机理。  相似文献   
119.
采用响应曲面法对微生物絮凝剂M-C11处理高岭土悬浊液的过程参数进行优化,选取中心复合实验设计(CCD),以p H、M-C11投加量和Ca Cl2投加量等因素为自变量,以处理后的高岭土悬浊液絮凝率(Fr)为响应值,并借助扫描电镜对絮凝剂的作用机理进行初步探讨。结果表明,微生物絮凝剂M-C11可显著改善高岭土悬浊液的絮凝性能,且选取的3种单因素水平均可影响絮凝剂活性。经多元回归拟合分析,在M-C11投加量为2.56 m L,Ca Cl2投加量为0.37 g/L的最优条件下,微生物絮凝活性实验值可达92.37%,接近模型预测值(92.30%)。Ca Cl2投加量对絮凝效果的影响高于M-C11投加量(PCa Cl2相似文献   
120.
采用不同的表面改性方法(去矿化处理、氧化改性、碱改性和还原改性)对污泥基活性炭(SCAC)进行处理,分别获得了表面金属含量低、碱位低、碱性官能团含量高及Lewis碱含量高的4种改性SCAC(SCAC-D、SCAC-S、SCAC-OH和SCAC-N),对比考察了改性前后SCAC催化臭氧氧化去除布洛芬(IBP)的效能,并探讨了SCAC催化臭氧氧化反应的主要活性位点。结果表明,5种SCAC催化活性顺序为:SCAC-N>SCAC-OH>SCAC>SCAC-S>SCAC-D;金属组分减少会直接影响SCAC的催化活性,碱位减少对其催化活性的影响相对较弱,说明SCAC表面较为丰富的金属组分是其催化臭氧氧化反应的主要活性位点;增加SCAC表面碱位(Lewis碱和碱性官能团),减少表面酸性官能团有助于提高其催化活性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号