首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   28篇
  国内免费   68篇
安全科学   15篇
废物处理   31篇
环保管理   18篇
综合类   160篇
基础理论   29篇
污染及防治   48篇
评价与监测   1篇
  2024年   1篇
  2023年   5篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   4篇
  2016年   7篇
  2015年   5篇
  2014年   18篇
  2013年   12篇
  2012年   16篇
  2011年   22篇
  2010年   12篇
  2009年   13篇
  2008年   21篇
  2007年   29篇
  2006年   14篇
  2005年   23篇
  2004年   13篇
  2003年   11篇
  2002年   8篇
  2001年   10篇
  2000年   6篇
  1999年   4篇
  1998年   6篇
  1997年   8篇
  1996年   4篇
  1995年   2篇
  1994年   4篇
  1993年   5篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
排序方式: 共有302条查询结果,搜索用时 15 毫秒
211.
通过正交实验制备了阳离子絮凝剂壳聚糖季铵盐(HTCC),研究了壳聚糖季铵盐与聚合氯化铝(PAC)复配对黄河兰州段水的除浊效果,确定最佳复配比为m(HTCC)∶m(PAC)=1∶3。按该复配比,且在最佳投加量(1.25 mg/LHTCC+3.75 mg/L PAC)下,原浊为27.85~33.28 NTU的黄河水经处理后余浊<3 NTU。实验结果表明:pH对HTCC/PAC的除浊效果影响较大,当pH为7~9时,除浊效果均良好;而当pH为5~7时,投药范围内的最佳投药量提前,而除浊效率有所降低;沉降时间对HTCC/PAC的除浊效果无明显影响;HTCC/PAC以固-固方式复配的除浊效果比液-液方式复配的较差。  相似文献   
212.
聚合氯化铝污泥吸附除磷的改性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
研究了聚合氯化铝污泥(PACS)的酸和热改性及吸附动力学理论模型.结果表明,在酸处理过程中,经0.075mol/L盐酸在20℃下改性12h后所得酸改性PACS对磷的去除率最高,可达97.0%;在热处理过程中,经300℃煅烧温度下改性1h后所得热改性PACS对磷的去除能最高可达97.8%;相同静态吸附条件下,两种改性后PACS比原PACS对磷的去除率分别提高了21.4%及22.2%;吸附动力学拟合数据显示,PACS及酸、热改性PACS对磷的吸附行为可以用Simple Elovich模型较好的进行描述(R2≥0.97).  相似文献   
213.
将聚二甲基二烯丙基氯化铵(PDMDAAC)与聚合氯化铝铁(PAFC)复合制备了新型复合混凝剂PAFC–PDMDAAC (PAFC-PDM),对含藻的水库原水进行强化混凝处理研究.研究对比了PAFC-PDM,PAFC与预氯化工艺的除藻效果,并对其混凝除藻机理进行了初步探讨.结果表明,对于藻细胞数为7.98×106~1.17×107cells/L和浊度为2.56~3.59NTU的水库原水,当PAFC-PDM投加量为1.0mg/L时(以Al2O3计),藻类和浊度的去除率分别达到93.5%和81.7%,显著优于PAFC的混凝处理效果;对藻细胞进行扫描电镜和预氯化副产物分析表明,预氯化杀藻除藻方法,不仅破坏了藻细胞结构,而且产生了三卤甲烷类氯化消毒副产物,影响饮水水质;采用PAFC-PDM强化混凝工艺除藻,不破坏藻细胞,无消毒副产物.  相似文献   
214.
根据昆明市第三污水处理厂深度处理Actiflo-D型滤池工艺的运行数据,评价了工艺出水水质及总磷(TP)去除效果,同时分析了混凝剂投加量及药剂费用。结果表明:该Actiflo-D型滤池工艺出水ρ(TP)平均为0.26 mg/L,最优水平值为0.09 mg/L,95%保证值为0.53 mg/L,TP平均去除率为49.3%;出水悬浮固体(SS)浓度95%保证值为9 mg/L。混凝剂聚合氯化铝(PAC)的投加量为2~9 mg/L,去除单位TP的PAC投加量平均值为55.8 mg/mg,投加比β为1~10 mol/mol;投加比β>4时,出水ρ(TP)≤0.5 mg/L。吨水PAC成本平均值为0.049元/t。  相似文献   
215.
为研究不同碱度和浊度下抗生素SMZ(磺胺甲唑)和OTC(土霉素)的混凝去除特征,选择PAC(聚合氯化铝)为混凝剂,并分别以碳酸氢钠、高岭土调节碱度〔以ρ(CaCO3)计〕和浊度进行混凝模拟试验. 结果表明:当浊度为10 NTU时,SMZ和OTC的混凝去除率随着c(PAC)(以Al3+计)的增加而增加;在碱度为100 mg/L、c(PAC)为0.35×10-3 mol/L时,浊度对抗生素的去除有一定的影响但不显著,对SMZ去除的影响大于OTC. c(PAC)为0 mol/L时,高岭土对目标抗生素的吸附去除率较低,表明对抗生素去除起主要作用的是PAC. 碱度对SMZ和OTC的混凝去除率影响显著,这种影响是通过同时影响PAC的水解产物形态和抗生素总电荷而发挥作用的. 碱度为0 mg/L时,SMZ与OTC的混凝去除率分别为6.79%、-3.42%;碱度为25、100 mg/L时,SMZ与OTC的混凝去除率明显增加,并且当c(PAC)<0.3×10-3 mol/L时,低碱度(25 mg/L)下抗生素的混凝去除率优于高碱度(100 mg/L),而当c(PAC)>0.3×10-3 mol/L时则相反. 研究显示,碱度和浊度对混凝去除抗生素均有明显影响,但碱度对混凝去除抗生素的影响大于浊度.   相似文献   
216.
朱秀珍  孙建之 《化工环保》2012,32(5):444-447
以工业固体废弃物赤泥和粉煤灰为原料,经过酸浸、水解、聚合等步骤,制备复合型无机高分子絮凝剂聚合氯化铝铁.考察了酸浸出温度、盐酸浓度和浸出时间对赤泥和粉煤灰中Fe、Al溶出率的影响,并确定了最佳工艺条件.提取Fe、Al后的滤渣,采用碱溶法制备SiO2,考察了反应条件对实验结果的影响.结果表明,赤泥和粉煤灰中Fe和Al的溶出率都达到80.0%以上,SiO2的溶出率为65.0%.  相似文献   
217.
采用絮凝-电化学氧化协同工艺处理兰炭废水,探究了反应过程中絮凝剂投加量、反应时间、初始pH值、外加电压以及Na Cl添加量对化学需氧量(COD)和氨氮(NH3-N)去除的影响及絮凝-电化学氧化协同作用机制.结果表明,随着絮凝剂聚合氯化铝铁(PAFC)投加量和外加电压的增加,兰炭废水中COD和NH3-N的去除率逐渐升高.当PAFC投加量为50g/L、电压6V、反应时间4h,初始pH=9,NaCl添加量30g/L时,COD和NH3-N去除率分别为82.37%和100%,更换极板进行二次电解COD去除率可达100%.兰炭废水中有机污染物主要是苯酚类、醇类和酰胺类物质,处理后酚类物质含量大幅减少,酮类、醇类和酸类物质相对占比有所增加.絮凝-电化学氧化过程中,PAFC既是絮凝剂又是Cl-的提供者,其水解产生的Cl-与Na Cl引入的Cl-在电场作用下向阳极定向迁移.阳极表面发生氧化反应产生的有效氯(Cl2/ClO-)将兰炭...  相似文献   
218.
马甲泉 《化工环保》2001,21(4):240-240
我国生产聚合氯化铝 ( PAC)的一种普遍方法 ,是用铝酸钙粉与酸液反应而制得 ,所用原料为铝酸钙粉和盐酸或三氯化铝溶液 ,每生产 1 t质量分数为 1 0 %的液体 PAC就会产生约 1 5 0 kg废渣。按我公司目前的 PAC年产量 ( 1 0 kt固体 PAC和 2 0 kt液体 PAC)计 ,每年约产生 80 0 0~ 90 0 0 t废渣。对于如此大量的废渣 ,目前我公司采用的处理办法为填埋法 ,这不但造成环境污染 ,而且浪费大量的资源 ,耗费大量的人力、资金 ,还会提高生产成本。我们开发了此类废渣的处理工艺。1 废渣的成分  PAC废渣是铝酸钙粉与酸液反应后经自然沉淀产…  相似文献   
219.
PAC和PAM复合絮凝剂在洗涤剂废水处理中的应用研究   总被引:7,自引:0,他引:7  
絮凝性能的实验研究表明,PAC和PAM复合絮凝剂是处理洗涤剂废水的理想絮凝剂,采用该复合絮凝剂处理洗涤剂废水时的最佳操作条件如下:PAC用量为1.5g/L,PAM用量为10mg/L,pH值约为7.0,絮凝搅拌速度60r/min,絮凝搅拌时间30min,沉淀池沉淀时间为30min。该实验结果在中试规模的应用中得到了较好地验证,中试试验研究表明采用PAC和PAM复合絮凝剂处理洗涤剂废水,CODCr和LAS(直链烷基苯璜酸钠)去除率分别可达85%和72%以上,有效地解决了LAS难以生物降解等问题。  相似文献   
220.
微量加碱法合成聚合氯化铝的改进及Al13形成机理   总被引:14,自引:1,他引:13  
通过提高反应温度和加碱速度对做量加碱法进行了改进,从而提高了反应速度,缩短了反应时间,并提高了AlCl3、和NaOH的允许浓度及产品的总铝浓度.同时对AlCl3的形成机理进行了探讨.结果表明,_Ala形态首先与OH^-反应生成Ale形态,然后Ale形态与Ala形态反应生成了Alb形态,即AlCl3形态.第二步反应较慢,为总反应的速率控制步骤,且为吸热反应,AlCl3的生成速率随反应温度的升高而增大.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号