首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   16篇
  国内免费   67篇
安全科学   9篇
废物处理   2篇
环保管理   9篇
综合类   107篇
基础理论   3篇
污染及防治   28篇
评价与监测   1篇
  2024年   2篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   8篇
  2018年   9篇
  2017年   5篇
  2016年   2篇
  2015年   7篇
  2014年   9篇
  2013年   15篇
  2012年   10篇
  2011年   11篇
  2010年   17篇
  2009年   10篇
  2008年   15篇
  2007年   8篇
  2006年   5篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
排序方式: 共有159条查询结果,搜索用时 78 毫秒
71.
聚合氯化铝与聚磷硫酸铁絮凝除藻比较研究   总被引:1,自引:0,他引:1  
针对武汉市莲花湖湖水,采用聚合氯化铝(PAC)和聚磷硫酸铁(PPFS)进行絮凝实验,比较了两种无机絮凝剂的絮凝效果及原水处理前后藻类群落变化。主要结论如下:①PPFS与PAC的最佳投加量分别为1.5mg/L、2.0mg/L;②PPFS在去除藻类细胞、浊度和色度方面均优于PAC,当PPFS投加过量时,因水体中Fe3+过量分布,使水样色度去除率下降;③PPFS絮凝处理微囊藻为主体的水华原水时,其效果比PAC更好。本文研究后表明:PPFS是一种新型高效絮凝剂,其絮凝性能明显优于PAC,当水体以微型藻类为主时,可使用PPFS以替代PAC,能提高絮凝效果。  相似文献   
72.
将侧流释磷技术应用到低碳源污水生物处理中,能有效缓解或者消除生物除磷与脱氮之间的竞争与矛盾,维持系统的稳定.但在本系统研究中发现当外碳源(HAc)质量浓度超过350mg/L时(以COD计),出现强化释磷恶化甚至系统崩溃的现象.对各种可能因素进行分析,得出在释磷一运行周期内加入过量碳源,聚磷菌体内的糖原耗尽,释磷停止;长期加入过量碳源,聚磷菌淘汰,系统崩溃.  相似文献   
73.
聚磷菌在强化生物除磷中起关键作用,与聚磷菌新陈代谢密切相关的胞内聚合物有PHAs、糖原和poly-P。聚磷菌胞内聚合物的定性和定量测定方法有很多。文章采用多种方法对多聚物PHAs和poly-P进行染色,结果显示,对厌氧阶段生成的PHB颗粒的染色,尼罗蓝染色法比苏丹黑染色法特异性高;好氧阶段生成的多聚磷酸盐的染色方法中,DAPI染色法和奈瑟氏新方法效果更好。  相似文献   
74.
pH对低温除磷微生物种群与聚磷菌代谢的影响   总被引:2,自引:0,他引:2  
在5°C条件下通过运行SBR生物除磷反应器和静态实验考察pH对低温生物除磷系统的影响。pH不仅影响生物除磷反应器的性能,而且也会影响生物除磷系统的微生物种群结构。在pH为6的条件下长期运行的生物除磷系统中聚糖菌大量存在;而在中性(pH=7)和弱碱性(pH=8)条件下,聚磷菌在活性污泥中占有优势地位。静态实验结果表明,当pH在68.5之间变化时,聚磷污泥的厌氧释磷能力随pH的升高而提高。pH在68.5之间变化时,聚磷污泥的厌氧释磷能力随pH的升高而提高。pH在68之间变化时,乙酸吸收和PHB的合成能力随着pH升高而加强,当pH升高到8.5时,PHB合成能力下降,从而抑制了好氧段磷酸盐的吸收。pH为8时,生物除磷系统实现了充分的释磷和吸磷,并取得了最好的除磷效果。  相似文献   
75.
作为生物除磷系统中的主要功能菌,对聚磷菌菌群进行定性、定量分析是深入理解生物除磷系统、提高除磷效率的必然趋势。目前常用于检测聚磷菌的方法主要有生物化学法和分子生物学法,文章主要阐述了荧光原位杂交技术、聚合酶链反应技术、变性梯度凝胶电泳技术以及多技术结合使用的特点及应用情况,并在此基础上提出了改进措施以及聚磷菌检测技术的发展方向。  相似文献   
76.
张超  陈银广 《环境科学》2013,34(3):1004-1007
采用基于SCFAs代谢的动力学模型,模拟了不同碳源类型和不同m(P)/m(COD)对聚磷菌(PAO)和聚糖菌(GAO)竞争的影响.结果表明,以乙酸作为唯一碳源时,EBPR中的微生物种群结构基本保持反应器初始状态的生物组成,PAO或GAO都无法取得明显的竞争优势.但是,在进水中添加丙酸有利于PAO成为优势微生物,当丙酸占总酸的质量分数达到33%以上时,EBPR趋于稳定.当m(P)/m(COD)<0.01时,即使丙酸作为EBPR的碳源,GAO仍占(PAO+GAO)总量的95%以上.为了使PAO占有优势,进水m(P)/m(COD)应该控制在0.04~0.10之间.  相似文献   
77.
前置厌氧池DAT-IAT的工艺特性试验   总被引:3,自引:0,他引:3  
试验采用前置厌氧池的DAT-IAT工艺方法,以城市污水为处理对象研究工艺的生物降解过程及除磷效果。试验结果表明:该工艺处理城市污水能获得很好的处理效果且工艺稳定性高。IAT池曝气4hCODCr平均去除率可达到97.6%;氨氮的去除率因受进水氨氮负荷影响使得变化范围较大,从53.3%到98.7%,平均去除率在90%以上;厌氧池的设置使总磷的去除效果尤为突出,平均去除率在90.0%以上。  相似文献   
78.
王一冰 《环境工程》2019,37(1):83-87
为了探究乙醇外碳源驱动新型好氧/厌氧/好氧/延长闲置(O/A/O/EI)工艺生物脱氮除磷的可行性,以实际废水为研究对象,建立序批式反应器,探究了乙醇外碳源驱动下O/A/O/EI工艺中间代谢产物的变化、微生物种群的相对丰度,并阐明了乙醇外碳源驱动O/A/O/EI工艺生物除磷的机理。实验结果表明:乙醇可作为外碳源强化生物脱氮除磷,且出水ρ(TN)和ρ(TP)分别为1.2~1.6,0.2~0.6 mg/L,脱氮和除磷效率分别为91.2%~92.5%和92.4%~93.6%;内聚物聚羟基脂肪酸酯的最大含量为2.4 mmol/g(挥发性悬浮物),而糖原质的含量为2.7 mmol/g;荧光原位杂交技术显示乙醇驱动下PAO和GAO的相对丰度分别为39%和8%。乙醇可作为廉价碳源强化新型反应器O/A/O/EI生物脱氮除磷。  相似文献   
79.
为探究同步硝化内源反硝化除磷(SNEDPR)强化移动床生物膜反应器(MBBR)工艺脱氮除磷的可行性,采用连续曝气和搅拌/曝气交替运行的MBBR反应器,以磁性填料作为载体处理模拟生活污水,考察了SNEDPR启动过程中的脱氮除磷性能,并结合荧光显微镜和高通量测序技术对各个功能菌群结构变化情况进行了分析.结果表明,经两阶段运行后,氨氮和磷去除率分别达到97.6%和85.37%,出水NO2-—N、NO3-—N和COD浓度分别为1.3949,3.88和20.4mg/L,同步硝化内源反硝化率(SNEDR)由0.07%逐渐升高至86.35%.好氧阶段同步硝化内源反硝化率的提高,使出水NOx-—N浓度下降,提高了系统的脱氮性能和厌氧阶段内碳源的储存量.荧光显微镜和高通量测序结果表明,经过53d的运行,微生物群落多样性呈显著提高,系统内GAOs、AOB、NOB丰度的提高(分别由接种污泥中的3.3%、0.84%和0.66%提高至系统内的27.08%/20.48%、1.45%/1.76%和1.05%/0.85%)和PAOs、DPAOs的存在,保证了系统的脱氮除磷性能,在MBBR工艺中实现了EBPR与SNED的耦合.  相似文献   
80.
为了直接识别出污泥中的聚磷细菌和其种属,本研究采用4',6-二脒基-2-苯基吲哚(DAPI)染色和流式细胞荧光分选技术(FACS)对以淀粉为唯一碳源的缺氧/好氧序批式活性污泥(SBR)系统(R1)的缺氧末期和好氧末期以及以乙酸盐为唯一碳源的厌氧/好氧SBR系统(R2)的好氧末期污泥的聚磷细菌进行了原位分选,并通过16S rRNA高通量测序技术鉴定了分选后细菌的种属.结果表明,在R1中,缺氧期和好氧期均进行生物除磷,且缺氧期吸磷量大于好氧期. R2中发生着厌氧期释磷、好氧期大量吸磷的传统生物除磷.利用FACS在R1和R2污泥中均分选得到106个相对纯度为85%的具有聚磷颗粒的细菌.测序结果表明,在R1系统中,缺氧段优势的聚磷菌属为Halomonas(37.75%)、unclassified Brucellaceae(14.15%)、Pseudomonas(6.49%)、unclassified Chlamydiales(0.027%)和Sphingopyxis(0.007%);好氧段优势聚磷菌属为Halomonas(19.72%)、unclassified Brucellaceae(14.62%)、Pseudomonas(14.28%)、unclassified Comamonadaceae(0.046%)、unclassified Acidobacteria Gp3(0.036%)和Ferruginibacter(0.026%).R1系统中unclassified ChlamydialesSphingopyxis仅仅在缺氧条件下具有聚磷功能,而unclassified Comamonadaceae、unclassified Acidobacteria Gp3和Ferruginibacter仅在好氧条件下才具有聚磷功能.在R2系统中,优势聚磷菌群为Dechloromonas(11.06%)、unclassified Anaerolineaceae(9.29%)、unclassified Bacteroidetes(7.44%)、unclassified Gammaproteobacteria(7.34%)以及Acinetobacter(0.31%).这意味着在新型的除磷系统(R1)中,参与除磷过程的细菌包括好氧,缺氧和兼性缺氧聚磷细菌,而在传统的除磷系统(R2)中,参与除磷过程的细菌仅为好氧聚磷细菌.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号