首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1489篇
  免费   249篇
  国内免费   835篇
安全科学   99篇
废物处理   115篇
环保管理   136篇
综合类   1594篇
基础理论   156篇
污染及防治   277篇
评价与监测   185篇
社会与环境   4篇
灾害及防治   7篇
  2024年   59篇
  2023年   168篇
  2022年   196篇
  2021年   204篇
  2020年   152篇
  2019年   124篇
  2018年   67篇
  2017年   103篇
  2016年   61篇
  2015年   84篇
  2014年   152篇
  2013年   92篇
  2012年   108篇
  2011年   105篇
  2010年   81篇
  2009年   84篇
  2008年   62篇
  2007年   92篇
  2006年   97篇
  2005年   74篇
  2004年   58篇
  2003年   56篇
  2002年   34篇
  2001年   28篇
  2000年   34篇
  1999年   32篇
  1998年   21篇
  1997年   23篇
  1996年   23篇
  1995年   14篇
  1994年   12篇
  1993年   12篇
  1992年   13篇
  1991年   11篇
  1990年   13篇
  1989年   21篇
  1987年   2篇
  1986年   1篇
排序方式: 共有2573条查询结果,搜索用时 15 毫秒
141.
通过现场实验研究了6-APA制药厂生化处理出水的臭氧氧化特性及其动力学规律。结果表明,当臭氧浓度为27.5 mg/L,气水接触时间为80 min时,COD、UV254、NH3-N和色度的去除率分别可达72.95%、73.28%、72%和96.25%,达到《发酵类制药废水工业水污染物排放标准》(GB 21903-2008)排放控制要求。拟合结果表明,在0~10、10~30和30~90 min时段内,臭氧氧化过程遵循拟一级反应,但反应速率逐渐降低。当气水接触时间为30 min时,废水可生化性可由0.1提高至0.35,采用臭氧/生物处理的联合工艺也有望使出水达到相同的排放控制要求。  相似文献   
142.
在超重力场中,研究了硝基苯模拟废水的臭氧/双氧水(O3/H2O2)法处理效果,考察了超重力因子β、H2O2浓度、初始p H、液体流量及处理时间等因素对硝基苯去除率的影响。结果表明,硝基苯去除率随超重力因子β和处理时间的增加而增大,而随H2O2浓度、初始p H和液体流量的增加呈先增大后降低的趋势。当硝基苯初始浓度300 mg/L,工艺条件β=80、p H=10.0、臭氧质量浓度约为40 mg/L、H2O2浓度为4.9 mmol/L、液体流量为120 L/h时,循环处理35 min硝基苯去除率可达96.7%。处理时间60 min后,废水中硝基苯含量1.4 mg/L,COD为39 mg/L,达国家一级排放标准(GB 8978-1996)。在此条件下,硝基苯的降解过程符合准一级反应动力学。  相似文献   
143.
将臭氧分别与超声波、H2O2、紫外光等联用,深度处理干法腈纶生产厂生化池出水,对各种联用技术的处理效果进行了研究。实验结果表明:在进水流量2 L/min、反应时间30 min、臭氧加入量3.5 g/(L?h)的条件下,当超声功率为300 W时,臭氧-超声联用技术的COD去除率为30.0%;当H2O2加入量为0.4 mL/L时,臭氧-H2O2联用技术的COD去除率为50.7%;当紫外灯功率为40 W时,臭氧-紫外光联用技术的COD去除率为49.9%;在各种联用技术中,臭氧-H2O2联用技术的运行成本最低(为7.5 元/t),且处理后出水COD为143 mg/L,达到《<污水综合排放标准>(GB8978—1996)中石化工业COD标准值修改单》中的一级排放标准。综合考虑,臭氧-H2O2联用技术是深度处理干法腈纶废水的最优工艺。  相似文献   
144.
对Mn/γ-Al2O3催化剂的制备条件及头孢合成废水的催化臭氧氧化法深度处理工艺条件进行了优化。实验结果表明:以Mn(NO32溶液为浸渍液,Mn/γ-Al2O3催化剂的最优制备条件为浸渍液浓度0.10 mol/L、浸渍时间9 h、焙烧温度400 ℃、焙烧时间2 h;在反应时间为30 min、废水pH为9.0、臭氧通量为4.6 mg/min、催化剂加入量为5 g/L的条件下,当进水COD、BOD5、ρ(氨氮)和色度分别为220~250 mg/L,8~10 mg/L,10~12 mg/L和60~70倍时,出水COD、BOD5、ρ(氨氮)和色度的平均去除率分别为53%,30%,33%和93%,出水水质满足GB 21904—2008《化学合成类制药工业水污染物排放标准》的要求。  相似文献   
145.
采用臭氧氧化—包埋菌流化床生物处理组合工艺对煤气化废水进行深度处理。实验结果表明:当臭氧的质量浓度20 mg/L、臭氧进气流量1.5 L/min、臭氧通气时间30 min、包埋菌流化床水力停留时间24 h时,臭氧氧化工序的COD去除率达到30.0%~40.0%,总酚去除率达到100.0%;包埋菌流化床工序的COD去除率达到60.0%以上,氨氮的去除率大于95.0%;经组合工艺处理后,出水COD<60 mg/L,ρ(氨氮)<1.0 mg/L,ρ(总酚)未检出,色度小于50倍,达到GB8978—1996《污水综合排放标准》中的一级排放标准。  相似文献   
146.
羟基自由基抑制剂对臭氧氧化降解苯酚的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用臭氧氧化法处理模拟苯酚废水,考察了废水pH以及HCO3-、CO32-、HPO42-、H2PO4-和叔丁醇等·OH抑制剂对苯酚降解效果的影响。实验结果表明:苯酚降解率随废水pH的增大而增大;当废水pH=11时,降解25 min后苯酚降解率达到99.55%,比废水pH=5时提高了50.12百分点;CO32-和H2PO4-对·OH的抑制作用分别强于HCO3-和HPO42-;当叔丁醇质量浓度由0增至50 mg/L时,苯酚降解率由99.55%降至69.19%。  相似文献   
147.
正陶瓷膜过滤及臭氧氧化联用技术处理废水Chemical Engineering,2013,120(9):11,12为了考察陶瓷膜及臭氧对澳大利亚Melbourne Water’s公司东方处理厂废水的处理性能,建立了一套2.5 m3/h的中试装置,成功实现了对高通量、微污染废水的处理。该项目于近期完成,目的是检验荷兰PWN技术公司的CeraMac技术。尽管该技术已应用于荷兰、英国、美国及新加坡,该项澳大利亚的中试试验因为涉及二次出水因而是独特的。该  相似文献   
148.
分析了碱性介质臭氧降解烷基多苷(APG)的机制,进行了臭氧氧化降解APG的试验研究。结果表明,臭氧对APG有较强的氧化能力;有机质初始浓度高有利于其氧化降解;初始阶段降解速率较快,当COD降解率达80%时,再增加臭氧的通入量,降解变慢;臭氧氧化处理APG过程中泡沫的产生、存在的时间及消除与APG的浓度、氧化降解程度密切相关。  相似文献   
149.
对臭氧氧化去除焦化废水生化出水COD的反应动力学及其影响因素进行了实验研究,结果表明,在臭氧投加量为8.50mg/min,反应温度为20'E和初始pH为10.61条件下,对COD的降解符合表观一级反应动力学模型,其相关系数R。=0.9991,表观反应速率常数k。。=1.01×10^-3s-1。该条件下,臭氧氧化对COD的降解主要来源于高活性羟基自由基的强氧化作用。在不同的臭氧投加量(4.25~12.75mg/min)、不同的反应温度(10~40℃)和不同的初始pH(3.76~12.53)下,COD的降解也同样遵循一级反应动力学规律。随着臭氧投加量的增大,COD降解的表观反应速率常数从(0.554×10^-3)s-1增加到(1.06×10&-3)s-1;随着反应温度的升高,表观反应速率常数从(0.427×10^-3)s-1增加到(1.40×10-3)s-1,温度越高反应速率提高的幅度却越小;在初始pH3.76~10.61范围内,表观反应速率常数从(0.218×10^-3)s-1增加到(1.01×10^-3)s-1,在初始pH为12.53时表观反应速率常数下降到(0.857×10^-3)s-1。  相似文献   
150.
研究构建了2个容积为1.1 L的好氧活性污泥反应器(即1号和2号反应器)1,号反应器每天直接通加低剂量臭氧(投加量为0.01 g O3/g TSS),不加臭氧的2号反应器作为对照平行运行,均采用每天换一次人工污水的充/排式操作。运行71 d的结果表明2,个反应器对人工污水COD的处理效果基本相同。反应器运行40 d后1,号反应器的污泥浓度比2号反应器的污泥浓度低1 400~1 700 mg/L并可稳定在8 200 mg/L,污泥减量化效果明显。低剂量臭氧的直接通加明显降低了胞内ATP浓度,并影响了微生物的抗氧化活性,2号反应器的平均超氧化物歧化酶和过氧化氢酶酶活比1号反应器分别高了24.3%和9.5%。PCR-DGGE对两反应器微生物种群的分析结果表明:Uncultured gammaproteobacteria bacteri-um、Nannocystis exedens和Uncultured actinobacterium为1号反应器的主要种群;而2号反应器的主要种群为Uncultured bacte-rium和Uncultured gammaproteobacteria bacterium。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号