首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1242篇
  免费   188篇
  国内免费   560篇
安全科学   125篇
废物处理   146篇
环保管理   65篇
综合类   1110篇
基础理论   142篇
污染及防治   387篇
评价与监测   11篇
灾害及防治   4篇
  2024年   31篇
  2023年   75篇
  2022年   102篇
  2021年   107篇
  2020年   104篇
  2019年   101篇
  2018年   55篇
  2017年   62篇
  2016年   72篇
  2015年   91篇
  2014年   130篇
  2013年   123篇
  2012年   120篇
  2011年   98篇
  2010年   72篇
  2009年   100篇
  2008年   92篇
  2007年   83篇
  2006年   65篇
  2005年   56篇
  2004年   53篇
  2003年   57篇
  2002年   22篇
  2001年   24篇
  2000年   20篇
  1999年   22篇
  1998年   7篇
  1997年   7篇
  1996年   12篇
  1995年   6篇
  1994年   6篇
  1993年   5篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
排序方式: 共有1990条查询结果,搜索用时 875 毫秒
421.
铁锰双金属材料对砷和重金属复合污染土壤的稳定化研究   总被引:7,自引:0,他引:7  
由于矿产资源的共生、伴生现象及历史上采选冶技术的相对落后,我国矿区附近的重金属污染场地多存在复合污染的情况,而稳定化技术是解决该问题的有效措施.本文通过室内模拟培养实验和静态吸附试验,研究了人工合成的铁锰双金属材料(FMBO)对矿区复合污染土壤中As、Pb、Cd等重金属的稳定化作用和机制.毒性浸出实验结果表明,在3种不同的As和重金属复合污染土壤中,FMBO材料能够对As和Pb等重金属起到较好的稳定化作用,在5%的最大添加量下,FMBO对As、Pb的稳定化效率分别能够达到95.2%~100%和95.5%~97.5%,同时不会引起Cd、Zn和Cu等重金属的活化.由连续提取实验结果可知,FMBO能够使土壤中As和Pb由酸可提取态向可还原态转变,稳定性增强.微观特征分析结果表明,FMBO材料对As的稳定化主要通过表面羟基(—OH)基团的吸附作用,而对Pb、Cd等金属离子则通过吸附、沉淀等多种方式起作用.总体看来,FMBO材料适用于As、Pb等重金属复合污染土壤的治理.  相似文献   
422.
从重金属超累积植物龙葵体内提取内生菌Bacillus nealsonii,采用二氧化硅改性纳米Fe_3O_4颗粒与海藻酸钠将其包埋交联进行固定化,制得一种新型球状生物吸附剂,并应用于废水中Cd~(2+)的吸附处理.同时,通过正交实验研究了该球状生物吸附剂的最佳制备条件和吸附处理条件,并采用扫描电镜等表征手段与构建吸附动力学考察了其吸附特征.结果表明,球状生物吸附剂的最佳制备条件为:改性纳米Fe3O4颗粒质量分数为0.1%,海藻酸钠质量分数为8.0%,菌液接种量为0.4%,交联时间为2 h;其最佳吸附处理条件为p H=6、吸附时间12 h、吸附剂用量(干重)2.5 g·L-1,在Cd~(2+)初始浓度为50 mg·L-1时的吸附率可达96%以上.研究发现,球状生物吸附剂的内外部结构孔隙率较大,有利于促进Cd~(2+)的吸附.该吸附过程遵循准二级反应动力学,以化学吸附为主,符合Freundlich等温吸附模型,最大单分子吸附量可达13.02 mg·g-1.解吸实验结果表明,该吸附剂具有较好的可重复利用性.  相似文献   
423.
硬脂酸和硅烷偶联剂KH570对氧化钙疏水改性研究   总被引:1,自引:0,他引:1  
为开发事故情况下高浓度毒性有机物污染土壤快速固化/稳定化材料,本文以氧化钙(Ca O)为基材,硬脂酸和硅烷偶联剂KH570为两种改性剂,采用湿法工艺对Ca O粉体进行表面疏水改性,探讨不同工艺条件对改性效果的影响,并对改性后Ca O的形态和结构进行表征.结果表明,硬脂酸改性氧化钙的最佳工艺条件为:硬脂酸添加质量分数5%,改性温度30℃,改性时间30 min;KH570改性Ca O的最佳工艺条件为:KH570添加量0.02 m L·g-1Ca O,改性时间40 min.改性后Ca O的接触角均大于90°.傅里叶红外和扫描电镜分析表明,两种改性剂均以化学吸附的方式包覆在Ca O表面,达到了表面疏水改性的目的.  相似文献   
424.
生物炭及改性生物炭对水环境中重金属的吸附固定作用   总被引:8,自引:6,他引:2  
生物炭是由植物或动物废弃生物质在完全或部分缺氧条件经裂解炭化产生的一类高度芳香化、抗分解能力极强的碳质固体物质,是一种富含碳元素的有机连续体。生物炭比表面积大、疏松多孔,含有羟基、羧基、羰基等活性官能团,对多种重金属离子具有吸附固定作用,可以用来去除或削减水体中的有毒有害重金属。此外,利用酸、碱、石墨烯等物质对其进行修饰或改性,可提高对重金属的吸附能力。根据当前研究现状,综述了不同生物炭对水溶液中重金属离子的去除作用,并比较了一些生物炭改性前后与重金属的作用效果差异,同时归纳了生物炭与重金属的相互作用机理及其影响因素。在此基础上,展望了生物炭在去除水体环境中有毒有害重金属的研究方向,以期望生物炭得到更好应用。  相似文献   
425.
秦聪丽  傅吉全 《化工环保》2016,36(3):312-316
采用银杏叶和桑叶提取液制备了改性类Fenton反应催化剂并进行了表征分析,研究了溶液初始p H、反应温度、催化剂加入量、甲基橙初始质量浓度等因素对甲基橙降解率的影响,同时考察了催化剂的重复使用效果。表征结果表明:制备出的催化剂为Fe_2O_3和Fe OOH的混合物;桑叶改性催化剂的粒径分布较银杏叶改性催化剂均匀,粒径较小,比表面积较大。实验结果表明:在初始p H为6.23、反应温度60℃、催化剂用量1 g/L、甲基橙初始质量浓度100 mg/L的条件下,银杏叶改性催化剂的甲基橙降解率为99.40%,桑叶改性催化剂的甲基橙降解率为99.96%;碱性条件下,甲基橙降解率仍接近100%,扩宽了反应的p H适用范围,为碱性条件下处理偶氮染料提供了新思路;催化剂重复使用6次之后,甲基橙降解率仍可达到99%。根据反应前后溶液的紫外-可见吸收光谱,初步探讨了降解机理。  相似文献   
426.
在实验室条件下,对赤泥改性进行了研究,采用了7种改性工艺,研究结果显示3号赤泥制备吸附剂效果显著。制备工艺为赤泥600℃焙烧1 h+3 mol/L HCl酸浸3 h,滤渣用碳酸钠扩孔处理,经过改性后赤泥比表面积由原来的144.7 m2/g提高到532.8 m2/g。此外还采用扫描电镜对处理样品表面进行了表征分析。  相似文献   
427.
通过对粉末活性炭(PAC)的改性研究提高净水厂对苯胺突发污染的应急能力。以松花江水源地为实验用水,以苯胺污染为研究对象,采用PAC吸附工艺对净水厂应对苯胺突发污染的能力进行了系统研究。结果表明,由于原水中NOM存在的竞争吸附作用,当苯胺超标5倍时,需要PAC投加量130 mg/L才能使出水达标,但对出水浊度产生不利影响;经KOH改性的PAC,在不影响出水浊度的投加量为80 mg/L时就能处理超标5倍的苯胺。  相似文献   
428.
研究了自制改性聚乙烯醇对Ni~(2+)的吸附行为,在不同的吸附条件下,探讨相关因素的影响,并对实验数据进行动力学与热力学的拟合。结果表明,室温下,在溶液p H=6.0,NaNO_3的浓度为0.1 mol/L,吸附时间为60 min,液固比为250 m L/g,改性聚乙烯醇对浓度为0.1 mol/L Ni2+的吸附效果好,去除率达到98.05%;当干扰因子设定为0.1 mol/L的Ca(NO_3)_2,对Ni2+的去除率降到59.29%。改性聚乙烯醇对Ni2+的吸附动力学符合准二级动力学方程;Langmuir等温模型的拟合度较高,推测改性聚乙烯醇表面是均一的等质体,计算的最大吸附量为1.35 mmol/g,与实验结果一致;D-R等温模型的拟合度次之,在各温度下,E16 k J/mol,说明改性聚乙烯醇对Ni2+的吸附是以化学吸附为主。通过Van’t Hoff方程的拟合,计算得到的吉布斯自由能以及熵变和焓变表明该吸附过程为吸热化学反应。  相似文献   
429.
纳米二氧化硅表面改性及其对阿维菌素吸附和缓释性能   总被引:2,自引:0,他引:2  
以纳米SiO2为原材料,采用硅烷偶联剂KH-570对其进行表面改性,制备了具有疏水性的改性纳米SiO2,通过SEM、IR光谱分析以及元素分析,探讨了纳米SiO2改性后的形貌结构变化,以及其对阿维菌素的吸附和缓释性能.结果表明,经过硅烷偶联剂改性后的纳米SiO2分散性和亲油性都有了较好的改善,在乙醇中对阿维菌素的吸附率从13.98%提高到31.36%,并对阿维菌素具有较好的缓释效果,在溶出介质中对阿维菌素的控制释放时间可以持续80 h,所以,经硅烷偶联剂改性后的纳米SiO2可以作为疏水性药物的控释载体.  相似文献   
430.
本文以双苯苯氧化膦为阻燃体,合成了阻燃共聚酯。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号