首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   2篇
  国内免费   22篇
安全科学   2篇
废物处理   7篇
环保管理   19篇
综合类   55篇
基础理论   40篇
污染及防治   80篇
评价与监测   13篇
社会与环境   1篇
  2022年   3篇
  2021年   1篇
  2020年   5篇
  2018年   3篇
  2017年   3篇
  2016年   4篇
  2015年   3篇
  2014年   5篇
  2013年   30篇
  2012年   14篇
  2011年   12篇
  2010年   18篇
  2009年   25篇
  2008年   34篇
  2007年   15篇
  2006年   12篇
  2005年   2篇
  2004年   2篇
  2003年   6篇
  2002年   5篇
  2000年   6篇
  1999年   1篇
  1998年   3篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有217条查询结果,搜索用时 15 毫秒
141.
The efficiency of poplar (Populus nigra L.xPopulus maximowiczii Henry.) was assessed during a two-year chemically enhanced phytoextraction of metals from contaminated soils. The tested metal mobilizing agents were EDTA (ethylenediaminetetraacetic acid) and NH4Cl. EDTA was more efficient than chlorides in solubilizing metals (especially Pb) from the soil matrix. The application of chlorides only increased the solubility of Cd and Zn. However, the increased uptake of metals after the application of higher concentrations of mobilizing agents was associated with low biomass yields of the poplar plants and the extraction efficiencies after the two vegetation periods were thus comparable to the untreated plants. Additionally, the application of mobilizing agents led to phytotoxicity effects and increased mobility of metals. Higher phytoextraction efficiencies were observed for Cd and Zn compared to Pb and Cu. Poplars are therefore not suitable for chemically enhanced phytoextraction of metals from severely contaminated agricultural soils.  相似文献   
142.
143.
The objective of this study was to evaluate potential human and ecological risks associated with metals in fish and crayfish from mining in the Tri-States Mining District (TSMD). Crayfish (Orconectes spp.) and fish of six frequently consumed species (common carp, Cyprinus carpio; channel catfish, Ictalurus punctatus; flathead catfish, Pylodictis olivaris; largemouth bass, Micropterus salmoides; spotted bass, M. punctulatus; and white crappie, Pomoxis annularis) were collected in 2001--2002 from the Oklahoma waters of the Spring River (SR) and Neosho River (NR), which drain the TSMD. Samples from a mining-contaminated site in eastern Missouri and from reference sites were also analyzed. Individual fish were prepared for human consumption in the manner used locally by Native Americans (headed, eviscerated, and scaled) and analyzed for lead, cadmium, and zinc. Whole crayfish were analyzed as composite samples of 5--60 animals. Metals concentrations were typically higher in samples from sites most heavily affected by mining and lowest in reference samples. Within the TSMD, most metals concentrations were higher at sites on the SR than on the NR and were typically highest in common carp and crayfish than in other taxa. Higher concentrations and greater risk were associated with fish and crayfish from heavily contaminated SR tributaries than the SR or NR mainstems. Based on the results of this and previous studies, the human consumption of carp and crayfish could be restricted based on current criteria for lead, cadmium, and zinc, and the consumption of channel catfish could be restricted due to lead. Metals concentrations were uniformly low in Micropterus spp. and crappie and would not warrant restriction, however. Some risk to carnivorous avian wildlife from lead and zinc in TSMD fish and invertebrates was also indicated, as was risk to the fish themselves. Overall, the wildlife assessment is consistent with previously reported biological effects attributed to metals from the TSMD. The results demonstrate the potential for adverse effects in fish, wildlife, and humans and indicate that further investigation of human health and ecological risks, to include additional exposure pathways and endpoints, is warranted.This study was conducted by the Columbia Environmental Research Center (CERC) of the U.S. Geological Survey (USGS) and cooperating organizations and government agencies. All field and laboratory procedures conformed to the “Guidelines for the use of fishes in research” of the American Fisheries Society (AFS), Institute of Fishery Research Biologists (AIFRB), and American Society of Ichthyologists and Herpetologists (ASIH) Use of Fishes in Research Committee (AFS, AIFRB, and ASIH 2004), and with all USGS and CERC guidelines for the humane treatment of test organisms during culture and experimentation. Use of trade names does not constitute USGS or U.S. government endorsement.  相似文献   
144.
A large copper–nickel smelter complex is located at the Kole Penninsula, Russia, close to the Norwegian border. Trace-element concentrations in surface sediments (0–0.5 cm) and pre-industrial sediments from 45 lakes in the region were used to uncover spatial deposition patterns and contamination factor of sediments. Elevated concentrations were found, especially for Ni and Cu, but also for Pb, Co, Hg, As, and Cd. Highest concentrations were found up to 20 km from the smelter, but the concentrations decreased exponentially with distance from the smelter. Increasing Ni, Cu, As, and Hg concentrations from sub-surface to surface sediments were found for lakes at intermediate distances (20–60 km). This may reflect recent changes in atmospheric depositions, as shown in nearby Norwegian areas. However, we cannot rule out that this also may have been caused by diagenetic processes, especially for the most redox-sensitive elements such as As.  相似文献   
145.
A bacterial isolate producing siderophore under iron limiting conditions, was isolated from mangroves of Goa. Based on morphological, biochemical, chemotaxonomical and 16S rDNA studies, the isolate was identified as Bacillus amyloliquefaciens NAR38.1. Preliminary characterization of the siderophore indicated it to be catecholate type with dihydroxy benzoate as the core component. Optimum siderophore production was observed at pH 7 in mineral salts medium (MSM) without any added iron with glucose as the carbon source. Addition of NaCl in the growth medium showed considerable decrease in siderophore production above 2% NaCl. Fe+2 and Fe+3 below 2 μM and 40 μM concentrations respectively, induced siderophore production, above which the production was repressed. Binding studies of the siderophore with Fe+2 and Fe+3 indicated its high affinity towards Fe+3. The siderophore concentration in the extracellular medium was enhanced when MSM was amended with essential metals Zn, Co, Mo and Mn, however, decreased with Cu, while the concentration was reduced with abiotic metals As, Pb, Al and Cd. Significant increase in extracellular siderophore production was observed with Pb and Al at concentrations of 50 μM and above. The effect of metals on siderophore production was completely mitigated in presence of Fe. The results implicate effect of metals on the efficiency of siderophore production by bacteria for potential application in bioremediation of metal contaminated iron deficient soils especially in the microbial assisted phytoremediation processes.  相似文献   
146.
Identifying and quantifying the contributions of multiple sources of trace elements to stream sediments in a basin containing several possible inputs presents a unique problem related to the investigation of rivers impacted by industrial activity. A multi-source dilution-mixing model was developed and applied to determine the relative contributions to As, Cu and Pb burdens in the Clark Fork River, Montana, a recipient of historical mine wastes as a result of over a century of mining and milling operations. The results identified the Flint Creek drainage as a major source of anthropogenic As (47%) and Pb (35%) to sediments of the Clark Fork River and the Milltown Reservoir, in addition to the major sources associated with mining operations in Butte, MT. The Little Blackfoot River also contributes anthropogenic As (3%) and Pb (4%) to the Clark Fork River, while minor inputs of Cu (1%) and Pb (2%) emanate from the Blackfoot River. The model allows source quantification, and an understanding of the fate and transport of mine wastes in a basin, allowing identification and eventual prioritization of sites destined for remediation.  相似文献   
147.
以长春市土壤为对象,既研究了长春市土壤理化性质特征,又采用间歇法研究了城市土壤吸附重金属Pb、Cd和Cu动力学特征及其两者之间的关系。结果表明:长春市土壤pH接近于中性或者偏碱性;土壤碳酸钙、有机质含量升高;土壤砂粒化;土壤CEC和Eh具有逐渐降低的趋势。土壤吸附重金属动力学过程包括快速阶段和慢速阶段,不同重金属在不同吸附阶段吸附速率明显不同。双常数速率方程和Elovich方程基本上可以描述土壤对Pb、CA和Cu吸附的动力学过程。pH、碳酸钙和砂粒含量是影响Pb吸附速率的主要因子;碳酸钙含量是影响CA吸附速率的主要因子。  相似文献   
148.
Although ecotoxicological data on heavy metals are abundant, information on other potentially toxic elements with attributed deficiency and/or toxic disturbances is scarce. Here we quantify zinc, copper, iron, manganese, chromium, molybdenum, strontium, barium, and boron in bones of greater white-toothed shrews, Crocidura russula, inhabiting two protected Mediterranean coastal sites: the Ebro Delta, a wetland impacted by human activities, and the Medas Islands, a reference site. Natural and anthropogenic inputs significantly increase Fe, Mn, Mo, Sr, Ba, and B in specimens from the Ebro Delta, whereas Cu and Cr were higher in Medas' shrews. Principal component analysis allowed complete separation between sites along the first two axes in particular due to B, Sr, and Cu. This study provides metal reference values in bones of insectivores, explores their variability and bioaccumulation patterns in depth, and assesses the potential environmental risk and toxicity for biota exposed to the above elements.  相似文献   
149.
It is well known that earthworms can accumulate metals. However, most accumulation studies focus on Cd-, Cu-, Pb- or Zn-amended soils, additionally few studies consider accumulation kinetics. Here we model the accumulation kinetics of 18 elements by Eisenia fetida, exposed to 8 metal-contaminated and 2 uncontaminated soils. Tissue metal concentration was determined after 3, 7, 14, 21, 28 and 42 days. Metal elimination rate was important in determining time to reach steady-state tissue metal concentration. Uptake flux to elimination rate ratios showed less variation and lower values for essential than for non-essential metals. In theory kinetic rate constants are dependent only on species and metal. Therefore it should be possible to predict steady-state tissue metal concentrations on the basis of very few measurements using the rate constants. However, our experiments show that it is difficult to extrapolate the accumulation kinetic constants derived using one soil to another.  相似文献   
150.
Due to relatively high chelant dosages and potential environmental risks it is necessary to explore different approaches in the remediation of metal-contaminated soils. The present study focussed on the removal of metals (As, Cd, Cu, Pb and Zn) from a multiple metal-contaminated soil by growing Brassica carinata plants in succession to spontaneous metallicolous populations of Pinus pinaster, Plantago lanceolata and Silene paradoxa. The results showed that the growth of the metallicolous populations increased the extractable metal levels in the soil, which resulted in a higher accumulation of metals in the above-ground parts of B. carinata. Root exudates of the three metallicolous species were analysed to elucidate their possible role in the enhanced metal availability. The presence of metals stimulated the exudation of organic and phenolic acids as well as flavonoids. It was suggested that root exudates played an important role in solubilising metals in soil and in favouring their uptake by roots.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号