首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   4篇
  国内免费   9篇
废物处理   1篇
环保管理   4篇
综合类   19篇
基础理论   14篇
污染及防治   8篇
社会与环境   1篇
灾害及防治   1篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   5篇
  2010年   2篇
  2008年   2篇
  2006年   1篇
  2004年   2篇
  2003年   1篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1993年   3篇
  1990年   1篇
排序方式: 共有48条查询结果,搜索用时 93 毫秒
41.
The on-going introduction of non-native species to Antarctica due to expanding human activity presents an increasing threat to biodiversity. Under the Protocol on Environmental Protection to the Antarctic Treaty, all introduced non-native species should be removed from the Antarctic Treaty area. The non-native grass Poa pratensis was first introduced to Cierva Point (Danco Coast, Antarctic Peninsula), along with substantial quantities of non-Antarctic soil, in the mid-1950s. Consistent with the Protocol, in January 2015 an internationally coordinated team undertook the eradication of the grass. Immediately prior to removal of P. pratensis, factors affecting its establishment, persistence and impacts upon local indigenous species was examined within the international management framework of the Antarctic Treaty System. The underlying soil had a high organic content of 15.5%, which may have contributed to the successful establishment of P. pratensis and restricted, at least initially, its vegetative growth to the enriched area. Examination of P. pratensis expansion from the original introduction sites showed that the plant colony intricate root system facilitated little or no coexistence of other native plants within its extent. The non-native plant colony also constituted a novel habitat for soil fauna within Antarctic terrestrial environments. The P. pratensis plant colony provided an unfavorable habitat for two of the locally endemic soil invertebrates, Cryptopygus antarcticus and Belgica antarctica. These observations led to the selection of an appropriate eradication approach, where the plants were targeted for physical extraction along with all underlying soil. During the eradication, c. 500 kg of soil and plant material from the P. pratensis colony was removed from the site. Monitoring one year later showed no evidence of re-establishment. Consistent with the Committee for Environmental Protection ‘Non-native Species Manual’, we recommend development and implementation of rapid response protocols following the discovery of a non-native plant colony to limit future impacts on indigenous species and local habitats.  相似文献   
42.
GOAL, SCOPE AND BACKGROUND: Great interest in the unprecedented events of the major, sudden stratospheric warming and the ozone hole split over Antarctica in September 25, 2002 motivates a necessity to analyze the current understanding on the dynamics, chemistry and climate impacts that are associated with both events. METHODS: Significant progress in the analysis of the observational data obtained, as well as successful development and application of dynamical modeling, which have been achieved very recently, create a basis for the first survey on the role of the major, sudden stratospheric warming observed in the southern hemisphere and its relationship to the diminutive Antarctic ozone hole and its break up into two parts. RESULTS AND DISCUSSION: Special attention has been paid to assessments of the causes of the major warming event and the future expectations concerning the stratospheric ozone depletion effect. Among the principal results is the fact that, as the polar vortex elongated, it became hydrodynamically unstable, and this insta-, bility affected the upper troposphere and stratosphere. During the major, sudden stratospheric warming, the middle stratospheric vortex split into two pieces; one piece rapidly mixed with extra vortex air, while the other returned to the pole as a much weaker and smaller vortex. The polar night jet was considerably weaker than normal, and was displaced more poleward than has been observed in previous winters, resulting from a series of wave events (propagated from the troposphere) that took place over the course of the winter. Finally, the relative ozone decrease (increase) in the eastern Antarctic is tightly associated with westerly (easterly) zonal wind anomalies near the southern tip of South America, and the unusual behavior of the ozone hole in 2002 therefore appears to be caused by great easterlies in this region. CONCLUSIONS: The main conclusion is that the southern polar vortex and the diminutive ozone hole split into two parts in September 2002, due to the prevalence of very strong planetary waves, led to the appearance of a major, sudden stratospheric warming. Although there is evidence that sea surface temperature anomalies contributed to the excitation of the quite strong planetary waves over Antarctica in 2002, there is not yet a widely approved mechanism supporting that. RECOMMENDATIONS AND OUTLOOK:The appearance of the near-record size of the 2003 ozone hole confirmed that the 'no-ozone-hole' episode observed in the year 2002 does not denote a recovery of the ozone layer. Despite the current successful attempts to get a sufficient understanding for the genesis of both extraordinary events, more observations and further modeling efforts are necessary to more reliably assess the contribution of various dynamic mechanisms to the recently observed tropo-stratospheric surprises.  相似文献   
43.
基于南极长城站的气象观测(1985-2006年)和NCEP(National Centers for Environmental Prediction)的再分析数据,分析了该地区海雾的天气气候特征、海雾与气象要素的关系以及有利于海雾发生的3种典型天气形势,并据此初步建立了长城站夏季海雾预报系统。后报试验表明,该系统对长城站夏季海雾的预报效果较好。  相似文献   
44.
Fast climate changes in the western Antarctic Peninsula are reducing krill density, which along with increased fishing activities in recent decades, may have had synergistic effects on penguin populations. We tested that assumption by crossing data on fishing activities and Southern Annular Mode (an indicator of climate change in Antarctica) with penguin population data. Increases in fishing catch during the non-breeding period were likely to result in impacts on both chinstrap (Pygoscelis antarcticus) and gentoo (P. papua) populations. Catches and climate change together elevated the probability of negative population growth rates: very high fishing catch on years with warm winters and low sea ice (associated with negative Southern Annular Mode values) implied a decrease in population size in the following year. The current management of krill fishery in the Southern Ocean takes into account an arbitrary and fixed catch limit that does not reflect the variability of the krill population under effects of climate change, therefore affecting penguin populations when the environmental conditions were not favorable.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01386-w) contains supplementary material, which is available to authorized users.  相似文献   
45.
利用东南极大陆沿岸中山站2008—2010年的CO浓度在线观测和相关资料,分析了大气中CO浓度的本底特征及其季节变化.结果显示,在不同风向和风速条件下CO浓度变化很小,表明风向和风速对CO监测结果的影响很小,也表明观测的CO浓度受局地污染源排放影响很小,可以代表南极中山站的本底浓度.中山站与其它南极站相似,CO浓度具有非对称的季节变化,月平均浓度最高值出现在春季(9—10月),最低值在夏末秋初(2—3月),月平均CO浓度在30~65 ppb之间.南极各站的年平均CO浓度的年际变化范围差异不大,均为2~3 ppb.  相似文献   
46.
Biogeochemical cycles of selenium in Antarctic water   总被引:2,自引:0,他引:2  
BiogeochemicalcyclesofseleniuminAntarcticwater¥XiaWeiping(DepartmentofOceanography,OldDominionUniversity,Norfolk,VA23529,USA)...  相似文献   
47.
The species of copper and zinc, such as bioexchangeable, skeletal, easily reducible (Fe and Mn oxides), moderately reducible (crystalline Mn oxide), organic combined with sulfides, and detritus with minerals, in mud and sand, separated from the surface Antarctic Ocean and the Taiwan Erhjin Chi coastal (including river and estuarine) sediments, have been analyzed by sequential leaching methods. Results show that in the Antarctic Ocean sediments, high concentrations of total copper (128 mg/kg) and zinc (458 mg/kg) were found in the high mud (99.09%) content samples compared with the low concentrations of total copper (83.8 mg/kg) and zinc (288 mg/kg) in low mud (51.69%) content samples. High concentrations of copper, zinc, manganese and iron are possibly due to the characteristics of manganese nodules, in which the species of copper and zinc are mainly contained in the crystalline Mn oxide phase. In the Taiwan Erhjin Chi coastal sediments, the total copper and zinc concentrations in mud and sand vary with season and location. High values were generally observed in the river sediments during the dry season, and low values were in the estuarine and coastal sediments during the heavy rainy season. High percentages of copper (as high as 49.4%) and zinc (as high as 76.7%) in mud and sand were in the bioexchangeable phase including the skeletal phase. This result might be correlated with the problems arising from human impact on copper and zinc as well as sewage pollution in Taiwan. In the organic combined phase, biogenic particulate matter related to higher primary productivity in the Antarctic Ocean is also discussed.  相似文献   
48.
Yoshitomi B  Nagano I 《Chemosphere》2012,86(9):891-897
Yellowtail (Seriola quinqueradiata) is the most important cultured marine fish in Japan. Dietary fish meal for yellowtail in aquaculture was replaced with 0.0%, 15.4% and 100.0% Antarctic krill meal (KM0, KM15, and KM100) and with 0.0%, 15.4%, and 100.0% low-fluoride krill meal (LFK0, LFK15 and LFK100). The fish was fed to duplicate fish groups for 92 d (KM trial) or 75 d (LFK trial), and fish growth was monitored.Dietary fluoride (F) concentrations (mg kg−1) were 110, 160, and 580 (KM0, KM15, and KM100, respectively) and 98, 120, and 190 (LFK0, LFK15, and LFK100, respectively). The growth during the experimental period, weight gain, feed intake, specific growth rate, and feed efficiency in fish fed the KM100 diet were markedly lower than the other experimental groups, which showed no marked differences in growth performance.After the experiment, dorsal muscle fluoride concentrations in each group were below the detectable limit (1 mg kg−1), but vertebral bone fluoride concentrations increased with increasing proportion of KM to 655 (KM0), 870 (KM15), and 2150 (KM100) mg kg−1. With increasing LFK in the feed, vertebral bone fluoride concentrations (mg kg−1) increased slightly from 500 (LFK0) to 655 (LFK15), and 695 (LFK100). No histopathological changes were detected in the liver tissue in any experimental group.It has been reported that the fluoride bioavailability was reduced with increasing water hardness, however, the dietary fluoride derived from KM exoskeleton accumulates in vertebral bones of marine fish with growth inhibition, as has already been shown for freshwater fish. Vertebral bone fluoride concentrations in two krill-eating Antarctic marine fish in the wild were 33 000 mg kg−1 (Champsocephalus gunnari) and 15 000 mg kg−1 (Notothenia rossii), but they did not show any adverse effect of growth. Therefore, fish bone fluoride accumulation apparently depends on fish species rather than the salinity of the habitat. Consequently, krill exoskeleton must be removed during the processing of Antarctic krill if indeed these krill are to be used as fish feed. However, LFK can completely replace dietary fish meal without apparent adverse effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号