首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   492篇
  免费   19篇
  国内免费   65篇
安全科学   31篇
废物处理   3篇
环保管理   38篇
综合类   206篇
基础理论   41篇
污染及防治   124篇
评价与监测   104篇
社会与环境   25篇
灾害及防治   4篇
  2023年   21篇
  2022年   12篇
  2021年   11篇
  2020年   17篇
  2019年   9篇
  2018年   15篇
  2017年   9篇
  2016年   11篇
  2015年   9篇
  2014年   29篇
  2013年   20篇
  2012年   20篇
  2011年   45篇
  2010年   31篇
  2009年   38篇
  2008年   37篇
  2007年   28篇
  2006年   14篇
  2005年   10篇
  2004年   18篇
  2003年   10篇
  2002年   15篇
  2001年   12篇
  2000年   12篇
  1999年   18篇
  1998年   18篇
  1997年   19篇
  1996年   5篇
  1995年   22篇
  1994年   15篇
  1993年   5篇
  1992年   12篇
  1991年   4篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1981年   1篇
  1973年   1篇
排序方式: 共有576条查询结果,搜索用时 31 毫秒
71.
Rainfall quantity and quality, and stream and loch water quality have been monitored throughout the Loch Fleet Project. This has allowed the effects of liming of parts of the catchment to be monitored, and assessments made of the effectiveness and duration of these treatments. Rainfall over 1989–1993 fluctuated around the long-term average of 2100 mm. Over this time, year by year variations in acid or sulphate loading from deposition was evident and quite substantial. There was no trend, however, reflecting reductions in national sulphur emissions. Liming parts of the catchment in 1986 increased stream and loch water pH and calcium concentrations and reduced inorganic aluminium concentrations. Improved stream and loch water quality has been maintained for more than eight years since liming.  相似文献   
72.
Atmospheric oxidizing capacity (AOC) is an essential driving force of troposphere chemistry and self-cleaning, but the definition of AOC and its quantitative representation remain uncertain. Driven by national demand for air pollution control in recent years, Chinese scholars have carried out studies on theories of atmospheric chemistry and have made considerable progress in AOC research. This paper will give a brief review of these developments. First, AOC indexes were established that represent apparent atmospheric oxidizing ability (AOIe) and potential atmospheric oxidizing ability (AOIp) based on aspects of macrothermodynamics and microdynamics, respectively. A closed study refined the quantitative contributions of heterogeneous chemistry to AOC in Beijing, and these AOC methods were further applied in Beijing-Tianjin-Hebei and key areas across the country. In addition, the detection of ground or vertical profiles for atmospheric OH·, HO2·, NO3· radicals and reservoir molecules can now be obtained with domestic instruments in diverse environments. Moreover, laboratory smoke chamber simulations revealed heterogeneous processes involving reactions of O3 and NO2, which are typical oxidants in the surface/interface atmosphere, and the evolutionary and budgetary implications of atmospheric oxidants reacting under multispecies, multiphase and multi-interface conditions were obtained. Finally, based on the GRAPES-CUACE adjoint model improved by Chinese scholars, simulations of key substances affecting atmospheric oxidation and secondary organic and inorganic aerosol formation have been optimized. Normalized numerical simulations of AOIe and AOIp were performed, and regional coordination of AOC was adjusted. An optimized plan for controlling O3 and PM2.5 was analyzed by scenario simulation.  相似文献   
73.
The atmospheric chemical mechanism is an essential component of airshed models used for investigating the chemical behaviors and impacts of species. Since the first tropospheric chemical mechanism was proposed in the 1960s, various mechanisms including Master Chemical Mechanism (MCM), Carbon Bond Mechanism (CBM), Statewide Air Pollution Research Center (SAPRC) and Regional Atmospheric Chemistry Mechanism (RACM) have been developed for different research purposes. This work summarizes the development and applications of these mechanisms, introduces their compositions and lumping methods, and compares the ways the mechanisms treat radicals with box model simulations. CBM can reproduce urban pollution events with relatively low cost compared to SAPRC and RACM, whereas the chemical behaviors of radicals and the photochemical production of ozone are described in detail in RACM. The photolysis rates of some oxygenated compounds are low in SAPRC07, which may result in underestimation of radical levels. As an explicit chemical mechanism, MCM describes the chemical processes of primary pollutants and their oxidation products in detail. MCM can be used to investigate certain chemical processes; however, due to its large size, it is rarely used in regional model simulations. A box model case study showed that the chemical behavior of OH and HO2 radicals and the production of ozone were well described by all mechanisms. CBM and SAPRC underestimated the radical levels for different chemical treatments, leading to low ozone production values in both cases. MCM and RACM are widely used in box model studies, while CBM and SAPRC are often selected in regional simulations.  相似文献   
74.
Using a bottom-up estimation method, a comprehensive, high-resolution emission inventory of gaseous and particulate atmospheric pollutants for multiple anthropogenic sectors with typical local sources has been developed for the Harbin-Changchun city agglomeration (HCA). The annual emissions for CO, NOx, SO2, NH3, VOCS, PM2.5, PM10, BC and OC during 2017 in the HCA were estimated to be 5.82 Tg, 0.70 Tg, 0.34 Tg, 0.75 Tg, 0.81Tg, 0.67 Tg, 1.59 Tg, 0.12 Tg and 0.26 Tg, respectively. For PM10 and SO2, the emissions from industry processes were the dominant contributors representing 54.7% and 49.5%, respectively, of the total emissions, while 95.3% and 44.5% of the total NH3 and NOx emissions, respectively, were from or associated with agricultural activities and transportation. Spatiotemporal distributions showed that most emissions (except NH3) occurred in November to March and were concentrated in the central cities of Changchun and Harbin and the surrounding cities. Open burning of straw made an important contribution to PM2.5 in the central regions of the northeastern plain during autumn and spring, while domestic coal combustion for heating purposes was significant with respect to SO2 and PM2.5 emissions during autumn and winter. Furthermore, based on Principal Component Analysis and Multivariable Linear Regression model, air temperature, relative humidity, electricity and energy consumption, and the urban and rural population were optimized to be representative indicators for rapidly assessing the magnitude of regional atmospheric pollutants in the HCA. Such indicators and equations were demonstrated to be useful for local atmospheric environment management.  相似文献   
75.
Understanding ozone (O3) formation regime is a prerequisite in formulating an effective O3 pollution control strategy. Photochemical indicator is a simple and direct method in identifying O3 formation regimes. Most used indicators are derived from observations, whereas the role of atmospheric oxidation is not in consideration, which is the core driver of O3 formation. Thus, it may impact accuracy in signaling O3 formation regimes. In this study, an advanced three-dimensional numerical modeling system was used to investigate the relationship between atmospheric oxidation and O3 formation regimes during a long-lasting O3 exceedance event in September 2017 over the Pearl River Delta (PRD) of China. We discovered a clear relationship between atmospheric oxidative capacity and O3 formation regime. Over eastern PRD, O3 formation was mainly in a NOx-limited regime when HO2/OH ratio was higher than 11, while in a VOC-limited regime when the ratio was lower than 9.5. Over central and western PRD, an HO2/OH ratio higher than 5 and lower than 2 was indicative of NOx-limited and VOC-limited regime, respectively. Physical contribution, including horizontal transport and vertical transport, may pose uncertainties on the indication of O3 formation regime by HO2/OH ratio. In comparison with other commonly used photochemical indicators, HO2/OH ratio had the best performance in differentiating O3 formation regimes. This study highlighted the necessities in using an atmospheric oxidative capacity-based indicator to infer O3 formation regime, and underscored the importance of characterizing behaviors of radicals to gain insight in atmospheric processes leading to O3 pollution over a photochemically active region.  相似文献   
76.
A concise modeling approach using long-term averaged meteorological data was developed to estimate site-specific concentrations of congeners of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) near a solid waste incinerator. This approach consists of calculation of atmospheric dispersion, dry and wet deposition of gaseous and particle-bound congeners, and non-steady-state concentrations in soil. The predictability of this approach was evaluated by comparison of calculated concentrations of congeners in soil with those measured at eight locations near a municipal solid waste incinerator (MSWI). The variation of these concentrations due to variability of meteorological parameters is small. A considerable number of mean values show good agreement with measured concentrations within a factor of three. The reasonable agreement between calculated and measured concentrations indicates that algorithms for the calculation of vapor-phase deposition and non-steady-state concentrations in soil must be included in the modeling approach for an accurate estimation of the concentrations of congeners of PCDD/Fs emitted from MSWIs to the atmosphere. For a detailed estimation of site-specific concentrations, it is important to specify the bulk density of soil in the evaluated area, together with meteorological parameters.  相似文献   
77.
The crucial parameter used to calculate turbulence effects upon light waves propagating through the atmosphere is known as the structure constant, . As Tatarski has shown, this parameter depends upon the “outer scale” of the inertial sub-range of the turbulence. Recently there have been successful predictions of astronomical “seeing” conditions at Mauna Kea Astronomical Observatory which have increased interest in this subject and in the use of the so-called “Dewan Optical Turbulence Model”. In the case of the Air Force, there has been a longstanding need for such optical turbulence prediction, especially in the stratosphere. In the past researchers have used a relation due to Tatarski, (which plays a prominent role in this model) in order to deduce values of the “outer scale” from measurements. When doing this, they have been surprised to find values very much smaller than expected. The goal of the paper is to explain this unexpected result. As we will show, this result can be explained by two factors: (a) the average turbulent layer thicknesses are smaller than originally believed, and, more importantly, (b) only a minor fraction of the stratosphere is turbulent. In order to arrive at this conclusion, we used the high-resolution (10 m) wind profiles that were originally used to formulate the previously mentioned optical turbulence model. The U.S. Government’s right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   
78.
Empirical critical loads (CL) for N deposition were determined from changes in epiphytic lichen communities, elevated NO(3)(-) leaching in streamwater, and reduced fine root biomass in ponderosa pine (Pinus ponderosa Dougl. ex Laws.) at sites with varying N deposition. The CL for lichen community impacts of 3.1kg ha(-1) year(-1) is expected to protect all components of the forest ecosystem from the adverse effects of N deposition. Much of the western Sierra Nevada is above the lichen-based CL, showing significant changes in lichen indicator groups. The empirical N deposition threshold and that simulated by the DayCent model for enhanced NO(3)(-)leaching were 17kg N ha(-1) year(-1). DayCent estimated that elevated NO(3)(-) leaching in the San Bernardino Mountains began in the late 1950s. Critical values for litter C:N (34.1), ponderosa pine foliar N (1.1%), and N concentrations (1.0%) in the lichen Letharia vulpina ((L.) Hue) are indicative of CL exceedance.  相似文献   
79.
Seasonal snowpack chemistry data from the Rocky Mountain region of the US was examined to identify long-term trends in concentration and chemical deposition in snow and in snow-water equivalent. For the period 1993–2004, comparisons of trends were made between 54 Rocky Mountain Snowpack sites and 16 National Atmospheric Deposition Program wetfall sites located nearby in the region. The region was divided into three subregions: Northern, Central, and Southern. A non-parametric correlation method known as the Regional Kendall Test was used. This technique collectively computed the slope, direction, and probability of trend for several sites at once in each of the Northern, Central, and Southern Rockies subregions. Seasonal Kendall tests were used to evaluate trends at individual sites.Significant trends occurred during the period in wetfall and snowpack concentrations and deposition, and in precipitation. For the comparison, trends in concentrations of ammonium, nitrate, and sulfate for the two networks were in fair agreement. In several cases, increases in ammonium and nitrate concentrations, and decreases in sulfate concentrations for both wetfall and snowpack were consistent in the three subregions. However, deposition patterns between wetfall and snowpack more often were opposite, particularly for ammonium and nitrate. Decreases in ammonium and nitrate deposition in wetfall in the central and southern rockies subregions mostly were moderately significant (p<0.11) in constrast to highly significant increases in snowpack (p<0.02). These opposite trends likely are explained by different rates of declining precipitation during the recent drought (1999–2004) and increasing concentration. Furthermore, dry deposition was an important factor in total deposition of nitrogen in the region. Sulfate deposition decreased with moderate to high significance in all three subregions in both wetfall and snowpack. Precipitation trends consistently were downward and significant for wetfall, snowpack, and snow-telemetry data for the central and southern rockies subregions (p<0.03), while no trends were noted for the Northern Rockies subregion.  相似文献   
80.
This study examined the influence of distance to the forest edge, forest type, and time on Cl, SO42−, NO3, and NH4+ throughfall deposition in forest edges. The forests were dominated by pedunculate oak, silver birch, or Corsican/Austrian pine, and were situated in two regions of Flanders (Belgium). Along transects, throughfall deposition was monitored at distances of 0-128 m from the forest edge. A repeated-measures analysis demonstrated that time, forest type, and distance to the forest edge significantly influenced throughfall deposition of the ions studied. The effect of distance to the forest edge depended significantly on forest type in the deposition of Cl, SO42−, and NO3: the edge effect was significantly greater in pine stands than in deciduous birch and oak stands. This finding supports the possibility of converting pine plantations into oak or birch forests in order to mitigate the input of nitrogen and potentially acidifying deposition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号