首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   3篇
  国内免费   40篇
安全科学   5篇
废物处理   4篇
环保管理   42篇
综合类   80篇
基础理论   37篇
污染及防治   20篇
评价与监测   8篇
社会与环境   11篇
灾害及防治   4篇
  2024年   1篇
  2023年   7篇
  2022年   5篇
  2021年   8篇
  2020年   5篇
  2019年   2篇
  2018年   1篇
  2017年   8篇
  2016年   6篇
  2015年   4篇
  2014年   7篇
  2013年   15篇
  2012年   7篇
  2011年   15篇
  2010年   10篇
  2009年   12篇
  2008年   11篇
  2007年   11篇
  2006年   10篇
  2005年   11篇
  2004年   2篇
  2003年   6篇
  2002年   6篇
  2001年   4篇
  2000年   4篇
  1999年   6篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   6篇
  1992年   4篇
  1991年   1篇
  1990年   5篇
  1982年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有211条查询结果,搜索用时 15 毫秒
71.
Many studies explore the feasibility of co-existence between genetically modified (GM) and conventional (non-GM) crops. An important research topic in these studies is the process of outcrossing, i.e., the process of gene flow via pollen flow from GM to non-GM crops. In this paper, we address a new modelling approach to define the environmentally driven processes of outcrossing for maize from existing empirical datasets. In particular, we use equation discovery methodology that combines background knowledge and empirical data from several studies. We induce models that predict the degree of outcrossing rate between the donor (GM) and the recipient (non-GM) maize field from the distance between the fields and the local wind characteristics (speed, direction and duration). This results in highly accurate models, for which both variables (distance and wind) are essential and of roughly equal importance.  相似文献   
72.
陕西潼关农田土壤及农作物重金属污染及潜在风险   总被引:13,自引:0,他引:13       下载免费PDF全文
对矿业活动频繁的陕西潼关农田土壤和主要农作物小麦和玉米中的Hg、Cd、Pb、Cu、Zn和As元素的污染现状进行了调查.结果表明,潼关农田土壤主要受到Hg、Cd、Pb的污染,超标率分别为89.8%,57.1%和12.2%,研究区83.6%的土壤已经受到了不同程度的重金属污染.小麦和玉米样品的调查表明,Hg、Cd、Pb是研究区农作物最主要的污染物,小麦和玉米中3种重金属的超标率分别为39.1%和44.4%,39.1%和33.3%,47.8%和33.3%.从潜在生态危害指数可以看出,样品具有轻微、中等、强和很强生态危害的比例分别为44.9%、38.8%、12.2%和4.1%,具有轻微的生态危害的农田土壤主要分布在研究区西北部和东部;具有中等的生态危害的农田土壤主要分布在研究区中部和南部;具有强生态危害和很强生态危害的农田土壤分布在南部.小麦和玉米中重金属含量与土壤中重金属含量的相关性分析表明,小麦和玉米中Hg的含量与土壤中Hg的含量显著相关.研究表明,加紧对陕西潼关重金属污染农田的治理刻不容缓.  相似文献   
73.
不同作物农田土壤抗生素抗性基因多样性   总被引:12,自引:6,他引:6  
土壤作为地球关键带最为活跃的组成部分,在保障粮食安全和维持生态环境平衡中发挥着重要作用.农田土壤抗生素抗性基因(antibiotic resistance genes,ARGs)污染特征和传播扩散机制受到了广泛的关注.为全面探究不同作物种植情况下农田土壤抗生素抗性基因污染特征,明确不同作物农田土壤抗性基因的多样性及其影响因素,本文采用抗生素抗性基因高通量qPCR技术(HT-qPCR),对不同作物农田土壤抗生素抗性基因的多样性展开了研究.结果表明,农田土壤总计检出187种抗生素抗性基因,种植柑橘(GJ)、花生(HS)、水稻(SD)、甘蔗(GZ)和香蕉(XJ)的土壤中分别检测出抗生素抗性基因89、147、143、157和159种,它们的丰度介于6.47×109~1.41×1010 copies·g-1之间,其中多重耐药抗性基因在农田土壤中占据显著优势.基于R软件的envfit分析显示,As、Co、Cr、Mo、Ni和Pb显著影响农田土壤抗生素抗性基因组成(P<0.05),冗余分析(RDA)显示这些重金属元素对农田土壤抗生素抗性基因变化的总解释量达到了59.3%.本研究证明,农田土壤是抗生素抗性基因的重要存储库,不同作物农田土壤抗性基因组成有显著差异(P<0.05),重金属元素对土壤抗性基因的赋存和扩散可能具有重要作用,种植不同作物对农田土壤抗生素抗性基因多样性产生了显著影响.  相似文献   
74.
Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.  相似文献   
75.
2013?—?2017年延安市实施了治沟造地工程,总投资约50亿,新造耕地3.33万hm2,但是研究发现新造耕地土壤贫瘠,改良需要较长时间.因此筛选新造耕地适生农作物及其高产品种,指导农业生产实践显得尤为重要和迫切.为此,本研究开展延安新造耕地适生农作物筛选实验,发现马铃薯为新造耕地适生农业作物,进而从甘肃等地选择有代...  相似文献   
76.
对电解铝厂周边氟污染的环境影响评价   总被引:1,自引:0,他引:1  
通过测定广西某电解铝厂周边大气、土壤和农作物中氟化物含量,对该厂周边的氟化物污染进行了评价,结果表明:电解铝厂周围大气氟污染与采样点的方位成显著相关关系;农作物玉米叶片氟污染主要来自于电解铝厂无组织排放的氟化物,而土壤中总氟含量除受大气中氟化物的影响外,还与当地的地质构造、土壤类型等因素有关,与主导风向无明显的相关关系,土壤中水溶氟含量与采样点到电解铝厂距离呈负相关。  相似文献   
77.
Vamerali T  Bandiera M  Mosca G 《Chemosphere》2011,83(9):1241-1248
Sunflower, alfalfa, fodder radish and Italian ryegrass were cultivated in severely As-Cd-Co-Cu-Pb-Zn-contaminated pyrite waste discharged in the past and capped with 0.15 m of unpolluted soil at Torviscosa (Italy). Plant growth and trace element uptake were compared under ploughing and subsoiling tillages (0.3 m depth), the former yielding higher contamination (∼30%) in top soil.Tillage choice was not critical for phytoextraction, but subsoiling enhanced above-ground productivity, whereas ploughing increased trace element concentrations in plants. Fodder radish and sunflower had the greatest aerial biomass, and fodder radish the best trace element uptake, perhaps due to its lower root sensitivity to pollution. Above-ground removals were generally poor (maximum of 33 mg m−2 of various trace elements), with Zn (62%) and Cu (18%) as main harvested contaminants. The most significant finding was of fine roots proliferation in shallow layers that represented a huge sink for trace element phytostabilisation.It is concluded that phytoextraction is generally far from being an efficient management option in pyrite waste. Sustainable remediation requires significant improvements of the vegetation cover to stabilise the site mechanically and chemically, and provide precise quantification of root turnover.  相似文献   
78.
There is currently a requirement for studies focusing on the long-term sustainability of phytoremediation technologies. Trace element uptake by Salix, Populus and Alnus species planted in dredged contaminated canal sediment and concentrations in sediment and pore waters were investigated, eight years after a phytoremediation trial was initiated in NW England. Soil biological activity was also measured using invertebrate and microbial assays to determine soil quality improvements. Zinc was the dominant trace metal in foliage and woody stems, and the most mobile trace element in sediment pore water (∼14 mg l−1). Biological activity had improved; earthworm numbers had increased from 5 to 24, and the QBS index (an index of microarthropod groups in soil) had increased from 70 to 88. It is concluded that biological conditions had improved and natural processes appear to be enhancing soil quality, but there remains a potential risk of trace element transfer to the wider environment.  相似文献   
79.
The current study was designed to investigate the potential human health risks associated with consumption of food crops contaminated with toxic heavy metals. Cadmium (Cd) concentration in surface soils; Cd, lead (Pb) and chromium (Cr) in the irrigation water and food crops were above permissible limits. The accumulation factor (AF) was >1 for manganese (Mn) and Pb in different food crops. The Health Risk Index (HRI) was >1 for Pb in all food crops irrigated with wastewater and tube well water. HRI >1 was also recorded for Cd in all selected vegetables; and for Mn in Spinacia oleracea irrigated with wastewater. All wastewater irrigated samples (soil and food crops) exhibited high relative contamination level as compared to samples irrigated with tube well water. Our results emphasized the need for pretreatment of wastewater and routine monitoring in order to avoid contamination of food crops from the wastewater irrigation system.  相似文献   
80.
Technological options for the management of biosolids   总被引:1,自引:0,他引:1  
BACKGROUND, AIM, AND SCOPE: Large quantities of biosolids (sewage sludge), which are produced from municipal wastewater treatment, are ever-increasing because of the commissioning of new treatment plants and continuous upgrades of the existing facilities. A large proportion of biosolids are currently landfilled. With increasing pressure from regulators and the general public, landfilling of biosolids is being phased out in many countries because of potential secondary pollution caused by leachate and the emission of methane, a potent greenhouse gas. Biosolids contain nutrients and energy that can be used beneficially. Significant efforts have been made recently to develop new technologies to manage biosolids and make useful products from them. In this paper, we provide a review of the technologies in biosolids management. MATERIALS AND METHODS: A survey of literature was conducted. RESULTS: At present, the most common beneficial use of biosolids is agricultural land application because of inherent fertilizer values found in biosolids. Expansion of land application, however, may be limited in the future because of more stringent regulatory requirements and public concern about food chain contamination in some countries. Perceived as a green energy source, the combustion of biosolids has received renewed interest. Anaerobic digestion is generally a more effective method than incineration for energy recovery, and digested biosolids are suitable for further beneficial use through land application. Although conventional incineration systems for biosolid management generally consume more energy than they produce because of the high moisture content in the biosolids, it is expected that more combustion systems, either monocombustion or cocombustion, will be built to cope with the increasing quantity of biosolids. DISCUSSION: Under the increasingly popular low-carbon economy policy, biosolids may be recognized as a renewable fuel and be eligible for 'carbon credits'. Because ash can be used to manufacture construction materials, combustion can provide a complete management for biosolids. A number of advanced thermal conversion technologies (e.g., supercritical water oxidation process and pyrolysis) are under development for biosolids management with a goal to generate useful products, such as higher quality fuels and recovery of phosphorus. With an ever-increasing demand for renewable energy, growing bioenergy crops and forests using biosolids as a fertilizer and soil amendment can not only contribute to the low-carbon economy but also maximize the nutrient and carbon value of the biosolids. CONCLUSIONS: Land application of biosolids achieves a complete reuse of its nutrients and organic carbon at a relatively low cost. Therefore, land application should become a preferred management option where there is available land, the quality of biosolids meet regulatory requirements, and it is socially acceptable. Intensive energy cropping and forest production using biosolids can help us meet the ever-increasing demand for renewable energy, which can eliminate the contamination potential for food sources, a common social concern about land application of biosolids. In recent years, increasing numbers of national and local governments have adopted more stringent regulations toward biosolid management. Under such a political climate, biosolids producers will have to develop multireuse strategies for biosolids to avoid being caught because a single route management practice might be under pressure at a short notice. Conventional incineration systems for biosolids management generally consume more energy than they produce and, although by-products may be used in manufacturing, this process cannot be regarded as a beneficial use of biosolids. However, biosolids are likely to become a source of renewable energy and produce 'carbon credits' under the increasingly popular, low-carbon economy policy. RECOMMENDATIONS AND PERSPECTIVES: To manage biosolids in a sustainable manner, there is a need for further research in the following areas: achieving a higher degree of public understanding and acceptance for the beneficial use of biosolids, developing cost-efficient and effective thermal conversions for direct energy recovery from biosolids, advancing technology for phosphorus recovery, and selecting or breeding crops for efficient biofuel production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号