首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  国内免费   6篇
综合类   7篇
污染及防治   5篇
评价与监测   3篇
社会与环境   1篇
  2022年   3篇
  2021年   1篇
  2017年   2篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1992年   1篇
排序方式: 共有16条查询结果,搜索用时 0 毫秒
11.
Determination of halogen-specific total organic halogen(TOX) is vital for studies of disinfection of waters containing bromide, since total organic bromine(TOBr) is likely to be more problematic than total organic chlorine. Here, we present further halogen-specific TOX method optimisation and validation, focusing on measurement of TOBr. The optimised halogen-specific TOX method was validated based on the recovery of model compounds covering different classes of disinfection by-products(haloacetic acids, haloacetonitriles,halophenols and halogenated benzenes) and the recovery of total bromine(mass balance of TOBr and bromide concentrations) during disinfection of waters containing dissolved organic matter and bromide. The validation of a halogen-specific TOX method based on the mass balance of total bromine has not previously been reported. Very good recoveries of organic halogen from all model compounds were obtained, indicating high or complete conversion of all organic halogen in the model compound solution through to halide in the absorber solution for ion chromatography analysis. The method was also successfully applied to monitor conversion of bromide to TOBr in a groundwater treatment plant. An excellent recovery(101%)of total bromine was observed from the raw water to the post-chlorination stage. Excellent recoveries of total bromine(92%–95%) were also obtained from chlorination of a synthetic water containing dissolved organic matter and bromide, demonstrating the validity of the halogen-specific TOX method for TOBr measurement. The halogen-specific TOX method is an important tool to monitor and better understand the formation of halogenated organic compounds, in particular brominated organic compounds, in drinking water systems.  相似文献   
12.
The UV/Cl2 process is commonly used to achieve a multiple-barrier disinfection and maintain residuals. The study chose methylamine as a precursor to study the formation of high-toxic halonitromethanes (HNMs) in the presence of bromide ions (Br) during UV/Cl2 disinfection. The maximum yield of HNMs increased first and then decreased with increasing concentration of Br. An excessively high concentration of Br induced the maximum yield of HNMs in advance. The maximum bromine incorporation factor (BIF) increased, while the maximum bromine utilization factor (BUF) decreased with the increase of Br concentration. The maximum yield of HNMs decreased as pH value increased from 6.0 to 8.0 due to the deprotonation process. The BUF value remained relatively higher under an acidic condition, while pH value had no evident influence on the BIF value. The maximum yield of HNMs and value of BUF maximized at a Cl2:Br ratio of 12.5, whereas the BIF value remained relatively higher at low Cl2:Br ratios (2.5 and 5). The amino group in methylamine was first halogenated, and then released into solution as inorganic nitrogen by the rupture of C-N bond or transformed to nitro group by oxidation and elimination pathways. The maximum yield of HNMs in real waters was higher than that in pure water due to the high content of dissolved organic carbon. Two real waters were sampled to verify the law of HNMs formation. This study helps to understand the HNMs formation (especially brominated species) when the UV/Cl2 process is adopted as a disinfection technique.  相似文献   
13.
A field experiment was conducted to compare two plastic mulches and two application rates on surface emissions and subsurface distribution of methyl bromide (MBr) in field beds in Florida. Within 30 minutes after injection of MBr to 30 cm depth, MBr had diffused upward to soil surface in all beds covered with polyethylene film (PE) or virtually impermeable film (VIF) and applied at a high rate (392 kg/ha) and a low rate (196 kg/ha). Due to the highly permeable nature of PE, within 30 minutes after injection, MBr volatilized from the bed surfaces of the two PE-covered beds into the atmosphere. The amount of volatilization was greater for the high rate-treatment bed. On the other hand, volatilization of MBr from the bed surfaces of the two VIF-covered beds were negligible. Volatilization losses occurred from the edges of all the beds covered with PE or VIF and were greater from the high rate-treatment beds. Initial vertical diffusion of MBr in the subsurface of the beds covered with PE or VIF was mainly upward, as large concentrations of MBr were detected from near bed surfaces to 20 cm depth in these beds 30 minutes after injection and little or no MBr was found at 40 cm depth. The two VIF-covered beds exhibited greater MBr concentrations and longer resident times in the root zone (0.5–40 cm depth) than corresponding PE-covered beds. Concentrations of MBr in the root zone of the high rate-treatment beds were 3.6–6.1 times larger than the low rate-treatment beds during the first days after application. In conclusion, VIF promoted retention of MBr in the root zone and, if volatilization loss from bed edges can be blocked, volatilization loss from VIF-covered beds should be negligible.  相似文献   
14.
水中溴离子对氯化消毒副产物的影响   总被引:4,自引:1,他引:4  
根据我国某城市饮用水中三卤甲烷类物质的现状,对水中Br^-的存在,Br^-对THMs,卤代乙酸类物质形成的影响以及THMs,HAAs形成的机理等进行综述,且提出了控制饮用水氯化消毒副产物的相应对策。  相似文献   
15.
离子色谱—电化学检测法测定溴和碘   总被引:2,自引:0,他引:2  
用离子色谱-电化学检测法同时测定溴和碘。以0.025mol/ L硝酸钠为淋洗液,其酸度为pH6.0.施加电压为+0.2V,对测定溴和碘量为适宜。方法可用于天然水中μg/L级溴和碘的测定。溴和碘的最低检测限各为0.4、1.0μg/L。当溴浓度为3.2μg/L,碘浓度为62μg/L时,变异系数各为3.4%及1.8%。  相似文献   
16.
In this study, the formation of iodinated trihalomethanes (I-THMs) was systematically evaluated and compared for three treatment processes - (i) chlorination, (ii) monochloramine, and (iii) dichloramination - under different pH conditions. The results demonstrated that I-THM formation decreased in the order of monochloramination > dichloramination > chlorination in acidic and neutral pH. However, the generation of I-THMs increased in the dichloramination < chlorination < monochloramination order in alkaline condition. Specifically, the formation of I-THMs increased as pH increased from 5 to 9 during chlorination and monochloramination processes, while the maximum I-THM formation occurred at pH 7 during dichloramination. The discrepancy could be mainly related to the stability of the three chlor (am) ine disinfectants at different pH conditions. Moreover, in order to gain a thorough insight into the mechanisms of I-THM formation during dichloramination, further investigation was conducted on the influencing factors of DOC concentration and Br/I molar ratio. I-THM formation exhibited an increasing and then decreasing trend as the concentration of DOC increased from 1 to 7 mg-C/L, while the yield of I-THMs increased with increasing Br/I molar ratio from 5:0 to 5:10. During the three processes mentioned above, similar I-THM formation results were also obtained in real water, which indicates that the excessive generation of I-THMs should be paid special attention during the disinfection of iodide-containing water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号