首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   521篇
  免费   64篇
  国内免费   176篇
安全科学   71篇
废物处理   79篇
环保管理   76篇
综合类   330篇
基础理论   59篇
污染及防治   118篇
评价与监测   14篇
社会与环境   12篇
灾害及防治   2篇
  2023年   6篇
  2022年   18篇
  2021年   18篇
  2020年   23篇
  2019年   15篇
  2018年   14篇
  2017年   16篇
  2016年   32篇
  2015年   17篇
  2014年   29篇
  2013年   41篇
  2012年   43篇
  2011年   43篇
  2010年   41篇
  2009年   24篇
  2008年   27篇
  2007年   54篇
  2006年   34篇
  2005年   44篇
  2004年   28篇
  2003年   36篇
  2002年   35篇
  2001年   26篇
  2000年   18篇
  1999年   15篇
  1998年   16篇
  1997年   9篇
  1996年   9篇
  1995年   6篇
  1994年   8篇
  1993年   6篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1982年   1篇
排序方式: 共有761条查询结果,搜索用时 312 毫秒
451.
The current generation pattern of e-waste consisted of dead electronic and electrical equipments poses one of the world's greatest pollution problem due to the lack of appropriate recovery technology. Crude recovery methods of resource materials (aluminum, zinc, copper, lead, gold) from e-waste caused serious pollution in China in the past years. Thus, environment-friendly technologies have been the pressing demand in e-waste recovering. Eddy current separation (ECS) was advised as the preferable technology for recovering nonferrous metals from e-waste. However, just a few reports focused on the application of ECS in e-waste recovering. This paper introduced the information about ECS including the models of eddy current force and movement behavior of nonferrous metallic particle in the separation process. Meanwhile, the developing process of eddy current separator was summarized. New industrial applications of ECS in e-waste (waste toner cartridges and refrigerator cabinets) recovering were also presented. Finally, for improving separation rate of ECS in industrial application of e-waste recovering, some suggestions were proposed related to crushing process, separator design, and separator operation. The aim of this paper is to demonstrate the effectiveness of ECS technology as practical and available tool for recovering non-ferrous metals from e-waste which is now being ignored.  相似文献   
452.
Magnetic particles were coupled with a flocculant to enhance the demulsification and separation of waste cutting emulsions. The optimal magnetic particle size and critical magnetic field conditions were investigated to achieve large-scale engineering application of magnetic demulsification separation for waste cutting emulsion treatment. The micro-scale magnetic particles were found to show comparable effects to nano-scale magnetic particles on enhancing the demulsification and separation of cutting emulsions, which are beneficial for broadening the selectivity of low-cost magnetic particles. The critical magnetic separation region was determined to be an area 40 mm from the magnetic field source. Compared to the flocculant demulsification, the magnetic demulsification separation exhibited a significant advantage in accelerating flocs–water separation by decreasing the separation time of flocs from 180–240 min to less than 15 min, compressing the flocs by reducing the floc volume ratio from 60%–90% to lower than 20%, and showing excellent adaptability to the variable properties of waste cutting emulsions. Coupled with the design of the magnetic disk separator, continuous demulsification separation of the waste cutting emulsion was achieved at 1.0 t/hr for at least 10 hr to obtain clear effluent with 81% chemical oxygen demand removal and 89% turbidity reduction. This study demonstrates the feasibility of applying magnetic demulsification separation to large-scale continuous treatment of waste emulsion. Moreover, it addresses the flocs–water separation problems that occur in practical flocculant demulsification engineering applications.  相似文献   
453.
建立了微塑料(Microplastics,MPs)荧光定量分析方法,系统研究了Fe3O4纳米颗粒对水中聚苯乙烯MPs的磁性去除效果.结果表明,MPs浓度在本实验范围内(0.2~10.0mg/L)与荧光强度线性关系良好,相关系数均>0.9990,能准确测定不同粒径(100~1000nm)MPs的浓度.MPs初始浓度与Fe3O4纳米颗粒投加量对MPs去除效果具有影响.增加Fe3O4纳米颗粒的投加量能够有效提升水中MPs的去除率,当Fe3O4投加量为12mg/L时,去除率可达90.8%.在低Fe3O4投加量时,MPs去除率随着MPs初始浓度增加而显著增加,显著性水平为0.015;但在中、高Fe3O4投加量时,初始浓度对去除效果影响很小,显著性水平分别为0.073和0.060.Fe3O4纳米颗粒对MPs的附着过程能够在180min内趋于平衡,整个动力学可通过拟一级或拟二级模型进行拟合.  相似文献   
454.
A factor separation technique and an improved regional air quality model (RAQM) were applied to calculate synergistic contributions of anthropogenic volatile organic compounds (AVOCs),biogenic volatile organic compounds (BVOCs) and nitrogen oxides (NOx) to daily maximum surface O3(O3DM) concentrations in East Asia in summer (June to August 2000).The summer averaged synergistic impacts of AVOCs and NOx are dominant in most areas of North China,with a maximum of 60 ppbv,while those of BVOCs and NOx are notable only in some limited areas with high BVOC emissions in South China,with a maximum of 25 ppbv.This result implies that BVOCs contribute much less to summer averaged O3DM concentrations than AVOCs in most areas of East Asia at a coarse spatial resolution (1×1) although global emissions of BVOCs are much greater than those of AVOCs.Daily maximum total contributions of BVOCs can approach 20 ppbv in North China,but they can reach 40 ppbv in South China,approaching or exceeding those in some developed countries in Europe and North America.BVOC emissions in such special areas should be considered when O3 control measures are taken.Synergistic contributions among AVOCs,BVOCs and NOx significantly enhance O3 concentrations in the Beijing-Tianjin-Tangshan region and decrease them in some areas in South China.Thus,the total contributions of BVOCs to O3DM vary significantly from day to day and from location to location.This result suggests that O3 control measures obtained from episodic studies could be limited for long-term applications.  相似文献   
455.
针对含油污泥处理现状,分析国内外处理含油污泥方法上存在的问题,提出超声波技术和调质-机械分离技术结合处理含油污泥的新方法。  相似文献   
456.
何音腩  陈鑫  邓慧萍 《四川环境》2011,30(1):126-132
国内外超声场强化膜分离的研究日益增加,本文介绍了附加超声场强化膜滤过程的原理,以及超声强化膜滤过程的两种理论模型。阐述了影响超声辅助膜工艺处理效果的因素,主要有超声频率、超声场强、溶液性质、错流速度、温度、操作压力和超声作用方式等。介绍了超声强化膜滤研究中采用的新技术,主要有SEM和声致荧光法。最后列举了超声与几种其他工艺联合使用强化膜处理的工艺,如超声-电场、超声-活性炭、超声-MBR工艺等。  相似文献   
457.
The syngas produced by coal gasification processes can be utilized in Pd-based water-gas-shift membrane reactors for the production of pure H2. Pd/alloy composite membrane reactors exhibit comparative advantages over traditional packed bed reactors such as simultaneous reaction/separation in one compact unit and increased reaction yields. Furthermore, the development of comprehensive process intensification strategies could further enhance membrane reactor performance resulting in a substantially smaller and functional, inherently safer, environmentally friendlier and more energy efficient process.A systematic non-isothermal modeling framework under both steady state and dynamic/transient conditions for a catalytic high temperature water-gas shift reaction in a Pd-based membrane reactor has been developed to characterize the dynamic behavior of the process system at various operating conditions from a process safety standpoint. In particular, various reaction conditions as well as key process variables such as feed temperature and flow rate, catalyst loading, driving force for H2 permeation are considered as they are critically related to various safety aspects in the operation of a Pd-based membrane reactor. Within the proposed framework, process parameters and operating conditions which may induce hazards and compromise process safety are identified, analyzed and characterized. Finally, the proposed approach is evaluated through detailed simulation studies in an illustrative case study involving a real Pd-based membrane reactor used for pure hydrogen production and separation that exhibits complex behavior over a wide operating regime.  相似文献   
458.
Plastic pollution has been a legacy environment problems and more recently, the plastic particles, especially those ultrafine or small plastics particles, are widely recognized with increasing environmental and ecological impacts. Among small plastics, microplastics are intensively studied, whereas the physicochemical properties, environmental abundance, chemical states, bioavailability and toxicity toward organisms of nanoplastics are inadequately investigated. There are substantial difficulties in separation, visualization and chemical identification of nanoplastics due to their small sizes, relatively low concentrations and interferences from co-existing substances (e.g., dyes or natural organic matters). Moreover, detection of polymers at nanoscale is largely hampered by the detection limit or sensitivity for existing spectral techniques such as Transformed Infrared Spectroscopy (FTIR) or Raman Spectroscopy. This article critically examined the current state of art techniques that are exclusively reported for nanoplastic characterization in environmental samples. Based on their operation principles, potential applications and limitations of these analytical techniques are carefully analyzed.  相似文献   
459.
• Cellulose-based membrane separates oily wastewater mimicking the living things. • The three central surface mechanisms were reviewed. • Preparation, performance, and mechanism are critically evaluated. • First review of wettability based cellulose membrane as major material. • The current and future importance of the research are discussed. It is challenging to purify oily wastewater, which affects water-energy-food production. One promising method is membrane-based separation. This paper reviews the current research trend of applying cellulose as a membrane material that mimics one of three typical biostructures: superhydrophobic, underwater superoleophobic, and Janus surfaces. Nature has provided efficient and effective structures through the evolutionary process. This has inspired many researchers to create technologies that mimic nature’s structures or the fabrication process. Lotus leaves, fish scales, and Namib beetles are three representative structures with distinct functional and surface properties: superhydrophobic, underwater superoleophobic, and Janus surfaces. The characteristics of these structures have been widely studied and applied to membrane materials to improve their performance. One attractive membrane material is cellulose, which has been studied from the perspective of its biodegradability and sustainability. In this review, the principles, mechanisms, fabrication processes, and membrane performances are summarized and compared. The theory of wettability is also described to build a comprehensive understanding of the concept. Finally, future outlook is discussed to challenge the gap between laboratory and industrial applications.  相似文献   
460.
•Strong ENSO influence on AOD is found in southern China region. •Low AOD occurs in El Niño but high AOD occurs in La Niña events in southern China. •Angstrom exponent anomalies reveals the circulation pattern during each ENSO phase. •ENSO exerts large influence (70.5%) on annual variations of AOD during 2002–2020. •Change of anthropogenic emissions is the dominant driver for AOD trend (2002–2020). Previous studies demonstrated that the El Niño–Southern Oscillation (ENSO) could modulate regional climate thus influencing air quality in the low-middle latitude regions like southern China. However, such influence has not been well evaluated at a long-term historical scale. To filling the gap, this study investigated two-decade (2002 to 2020) aerosol concentration and particle size in southern China during the whole dynamic development of ENSO phases. Results suggest strong positive correlations between aerosol optical depth (AOD) and ENSO phases, as low AOD occurred during El Niño while high AOD occurred during La Niña event. Such correlations are mainly attributed to the variation of atmospheric circulation and precipitation during corresponding ENSO phase. Analysis of the angstrom exponent (AE) anomalies further confirmed the circulation pattern, as negative AE anomalies is pronounced in El Niño indicating the enhanced transport of sea salt aerosols from the South China Sea, while the La Niña event exhibits positive AE anomalies which can be attributed to the enhanced import of northern fine anthropogenic aerosols. This study further quantified the AOD variation attributed to changes in ENSO phases and anthropogenic emissions. Results suggest that the long-term AOD variation from 2002 to 2020 in southern China is mostly driven (by 64.2%) by the change of anthropogenic emissions from 2002 to 2020. However, the ENSO presents dominant influence (70.5%) on year-to-year variations of AOD during 2002–2020, implying the importance of ENSO on varying aerosol concentration in a short-term period.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号