Runaway reactions present a potentially serious threat to the chemical process industry and the community; such reactions occur time and time again often with devastating consequences. The main objective of this research is to study the root causes associated with ammonium nitrate (AN) explosions during storage. The research focuses on AN fertilizers and studies the effects of different types of fertilizer compatible additives on AN thermal decomposition. Reactive Systems Screening Tool (RSST) has been used for reactivity evaluation and to better understand the mechanisms that result in explosion hazards. The results obtained from this tool have been reported in terms of parameters such as “onset” temperature, rate of temperature and pressure rise and maximum temperature. The runaway behavior of AN has been studied as a solid and solution in water. The effect of additives such as sodium sulfate (Na2SO4) and potassium chloride (KCl) has also been studied. Multiple tests have been conducted to determine the characteristics of AN decomposition accurately. The results show that the presence of sodium sulfate can increase the “onset” temperature of AN decomposition thus acting as AN thermal decomposition inhibitor, while potassium chloride tends to decrease the “onset” temperature thus acting as AN thermal decomposition promoter. 相似文献
The chytrid fungus Batrachochytrium dendrobatidis has been implicated in the decline and extinction of amphibian populations worldwide, but management options are limited. Recent studies show that sodium chloride (NaCl) has fungicidal properties that reduce the mortality rates of infected hosts in captivity. We investigated whether similar results can be obtained by adding salt to water bodies in the field. We increased the salinity of 8 water bodies to 2 or 4 ppt and left an additional 4 water bodies with close to 0 ppt and monitored salinity for 18 months. Captively bred tadpoles of green and golden bell frog (Litoria aurea) were released into each water body and their development, levels of B. dendrobatidis infection, and survival were monitored at 1, 4, and 12 months. The effect of salt on the abundance of nontarget organisms was also investigated in before and after style analyses. Salinities remained constant over time with little intervention. Hosts in water bodies with 4 ppt salt had a significantly lower prevalence of chytrid infection and higher survival, following metamorphosis, than hosts in 0 ppt salt. Tadpoles in the 4 ppt group were smaller in length after 1 month in the release site than those in the 0 and 2 ppt groups, but after metamorphosis body size in all water bodies was similar . In water bodies with 4 ppt salt, the abundance of dwarf tree frogs (Litoria fallax), dragonfly larvae, and damselfly larvae was lower than in water bodies with 0 and 2 ppt salt, which could have knock‐on effects for community structure. Based on our results, salt may be an effective field‐based B. dendrobatidis mitigation tool for lentic amphibians that could contribute to the conservation of numerous susceptible species. However, as in all conservation efforts, these benefits need to be weighed against negative effects on both target and nontarget organisms. 相似文献
Carbohydrates such as molasses are being added to aquifers to serve as electron donors for reductive dehalogenation of chloroethenes. Glucose, as a model carbohydrate, was studied to better understand the processes involved and to evaluate the effectiveness for dehalogenation of different approaches for carbohydrate addition. A simulation model was developed and calibrated with experimental data for the reductive dehalogenation of tetrachloroethene to ethene via cis-1,2-dichloroethene. The model included fermentors that convert the primary donor (glucose) into butyrate, acetate and hydrogen, methanogens, and two separate dehalogenator groups. The dehalogenation groups use the hydrogen intermediate as an electron donor and the different haloethenes as electron acceptors through competitive inhibition. Model simulations suggest first that the initial relative population size of dehalogenators and H(2)-utilizing methanogens greatly affects the degree of dehalogenation achieved. Second, the growth and decay of biomass from soluble carbohydrate plays a significant role in reductive dehalogenation. Finally, the carbohydrate delivery strategies used (periodic versus batch addition and the time interval between periodic addition) greatly affect the degree of dehalogenation that can be obtained with a given amount of added carbohydrate. 相似文献
Dibenzofuran (DF) is formed from phenol and benzene in combustion gas exhaust streams prior to particle collection equipment. Subsequent chlorination at lower temperatures on particle surfaces is a potential source of chlorinated dibenzofuran (CDF). Gas streams containing 8% O2 and approximately 0.1% DF vapor were passed through particle beds containing copper (II) chloride (0.5% Cu, mass) at temperatures ranging from 200 to 400 °C to investigate the potential for CDF formation during particle collection. Experiment duration was sufficient to provide an excess amount of DF (DF/Cu=3). The efficiency of DF chlorination by CuCl2 and the distribution of CDF products were measured, with effects of temperature, gas velocity, and experiment duration assessed. Results of a more limited investigation of dibenzo-p-dioxin (DD) chlorination by CuCl2 to form chlorinated DD (CDD) products are also presented.
The efficiency of DF/DD chlorination by CuCl2 was high, both in terms of CuCl2 utilization and DF/DD conversion. Total yields of Cl on CDF/CDD products of up to 0.5 mole Cl per mole CuCl2 were observed between 200 and 300 °C; this suggests that nearly 100% CuCl2 was utilized, assuming a conversion of two moles of CuCl2 to CuCl per mole Cl added to DD/DF. In a short duration experiment (DF/Cu=0.3), nearly 100% DF adsorption and conversion to CDF was achieved. The degree of CDF chlorination was strongly dependent on gas velocity. At high gas velocity, corresponding to a gas–particle contact time of 0.3 s, mono-CDF (MCDF) yield was largest, with yields decreasing with increasing CDF chlorination. At low gas velocity, corresponding to a gas–particle contact time of 5 s, octa-CDF yield was largest. DF/DD chlorination was strongly favored at lateral sites, with the predominant CDF/CDD isomers within each homologue group those containing Cl substituents at only the 2,3,7,8 positions. At the higher temperatures and lower gas velocities studied, however, broader isomer distributions, particularly of the less CDD/CDF products, were observed, likely due to preferential destruction of the 2,3,7,8 congeners. 相似文献