首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   318篇
  免费   13篇
  国内免费   84篇
安全科学   5篇
废物处理   24篇
环保管理   18篇
综合类   195篇
基础理论   46篇
污染及防治   106篇
评价与监测   14篇
社会与环境   7篇
  2023年   12篇
  2022年   13篇
  2021年   22篇
  2020年   12篇
  2019年   9篇
  2018年   15篇
  2017年   18篇
  2016年   13篇
  2015年   11篇
  2014年   10篇
  2013年   34篇
  2012年   14篇
  2011年   28篇
  2010年   9篇
  2009年   18篇
  2008年   18篇
  2007年   24篇
  2006年   14篇
  2005年   16篇
  2004年   10篇
  2003年   29篇
  2002年   10篇
  2001年   14篇
  2000年   5篇
  1999年   6篇
  1998年   7篇
  1997年   5篇
  1996年   1篇
  1995年   1篇
  1994年   5篇
  1993年   6篇
  1992年   4篇
  1990年   2篇
排序方式: 共有415条查询结果,搜索用时 156 毫秒
351.
Degradation of diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] in aqueous solution and the proposed degradation mechanism of diuron by ozonation were investigated. The factors that affect the degradation efficiency of diuron were examined. The generated inorganic ions and organic acids during the ozonation process were detected. Total organic carbon removal rate and the amount of the released Cl? increased with increasing ozonation time, but only 80.0% of the maximum theoretical concentration of Cl? at total mineralization was detected when initial diuron concentration was 13.8 mg L?1. For N species, the final concentrations of NO3 ? and NH4 + after 60 min of reaction time were 0.28 and 0.19 mg L?1, respectively. The generated acetic acid, formic acid and oxalic acid were detected during the reaction process. The main degradation pathway of diuron by ozonation involved a series of dechlorination-hydroxylation, dealkylation and oxidative opening of the aromatic ring processes, leading to small organic species and inorganic species. The degradation efficiency of diuron increased with decreasing initial diuron concentration. Higher pH value, more ozone dosage, additive Na2CO3, additive NaHCO3 and additive H2O2 were all advantageous to improve the degradation efficiency of diuron.  相似文献   
352.
许绩辉  王克 《中国环境科学》2022,42(7):3412-3424
基于LEAP构建自下而上的中国民航业能源系统模型,设置冻结、现有政策、力度、替代和革命五组情景,深入分析民航业的驱动因子和发展趋势,探讨中国民航业中长期低碳发展的技术路径.结果显示,预计2060年左右人均乘机次数翻两番,突破2人次,冻结情景下2060年会带来高达6.9亿t的碳排放.力度情景下,民航业碳排放有望在2044年左右达峰,峰值水平控制在3亿t左右,40年累积减排近50%,仅需增加约1万亿人民币的成本.稳步推进机队更新换代,加快基础设施提升和运营操作改进,发展可持续航空燃料是民航业必须依赖的减排手段,分别能带来44.1%、29.5%和26.4%的减排量.因此,民航业要尽早制定行业"双碳"目标和实施路径计划,中短期统筹推进空域改革、空中交通管理和航司精细化管理,大力支持国产大飞机的发展,长期推动可持续航空燃料全产业链商业化和市场化.  相似文献   
353.
This study attempts to identify the dominant transport pathways, potential source areas, and their seasonal variation at sites with high inorganic nitrogen (IN) wet deposition flux in southern China. This is a long-term study (2010–2017) based on continuous deposition measurements at the Guangzhou urban site (GZ) and the Dinghushan Natural Reserve site (DHS) located in the Pearl River Delta (PRD) region. A dataset on monthly IN concentration in precipitation and wet deposition flux were provided. The average annual fluxes measured at both sites (GZ: 33.04±9.52, DHS: 20.52±10.22 kg N/(ha∙year)) were higher, while the ratios of reduced to oxidized N (GZ: 1.19±0.77, DHS: 1.25±0.84) were lower compared with the national mean level and the previous reported level throughout the PRD region. The dominant pathways were not always consistent with the highest proportional trajectory clusters. The transport pathways contributing most of deposition were identified in the north and north-northeast in the dry season and in the east-southeast, east, and south-southwest in the wet season. A weighted potential source contribution function (WPSCF) value >0.3 was determined reasonably to define the potential source area. Emission within the PRD region contributed the majority (≥95% at both sites) of the IN deposition in the wet season, while the contribution outside the region increased significantly in the dry season (GZ: 27.86%, DHS: 95.26%). Our results could help create more effective policy to control precursor emissions for IN fluxes, enabling reduction of the ecological risks due to excessive nitrogen.  相似文献   
354.
Despite the widespread occurrence of phenols in anthropogenic and natural compounds, their fate in reactions with hypochlorous acid (HOCl), one of the most common water treatment disinfectants, remains incompletely understood. To close this knowledge gap, this study investigated the formation of disinfection by-products (DBPs) in the reaction of free chlorine with seven para-substituted phenols. Based on the chemical structures of the DBPs and the reaction mechanisms leading to their formation, the DBPs were categorized into four groups: chlorophenols, coupling products, substituent reaction products, and ring cleavage products. In contrast to previous studies that investigated the formation of early-stage chlorophenols, the primary focus of this study was on the elucidation of novel ring cleavage products, in particular α, β-unsaturated C4-dialdehydes, and C4-dicarboxylic acids, which, for the first time, were identified and quantified in this study. The molar yields of 2-butene-1,4-dial (BDA), one of the identified α, β-unsaturated C4-dialdehydes, varied among the different phenolic compounds, reaching a maximum value of 10.4% for bisphenol S. Molar yields of 2-chloromaleic acid (Cl-MA), one of the identified C4-dicarboxylic acids, reached a maximum value of 30.5% for 4-hydroxy-phenylacetic acid under given conditions. 2,4,6-trichlorophenol (TCP) was shown to be an important intermediate of the parent phenols and the C4-ring cleavage products. Based on the temporal trends of α, β-unsaturated C4-dialdehydes and C4-dicarboxylic acids, their formation is likely attributable to two separate ring cleavage pathways. Based on the obtained results, an overall transformation pathway for the reaction of para-substituted phenols with free chlorine leading to the formation of novel C4 ring cleavage products was proposed.  相似文献   
355.
ABSTRACT: Migration of plutonium, americium, and uranium (actinides) in the environment at the Rocky Flats Environmental Technology Site (RFETS) is the subject of ongoing studies to develop effective strategies for cleanup and regulatory closure of the Department of Energy facility. The Actinide Migration Evaluation pathway analysis quantified actinide transport processes to validate a qualitative conceptual model of environmental actinide transport. Major actinide transport mechanisms evaluated include surface water, ground water, airborne, and biological pathways. Relative quantities of actinide movement via different pathways were compared in terms of actinide loads delivered off the RFETS, using a combination of monitoring data, predictive transport models and results from historic RFETS studies. Results indicate air and surface water constitute the dominant transport mechanisms for plutonium and americium. In ground water, shallow alluvial flow is a limited pathway for plutonium and americium because of the low aqueous solubility of these actinides and their tendency to sorb to soil. However, localized flow in shallow alluvium is a more significant pathway for uranium movement, because of the relatively higher solubility of uranium (VI) species, though isotopic ratios indicate much of the uranium is from natural sources. Biological transport of actinides by mammals, birds, fish, and arthropods is small compared to the other pathways.  相似文献   
356.
Plastic pellets of polyethylene (PE), polypropylene (PP), and polystyrene (PS) were gasified in a two-stage thermal degradation process. The first stage is the conversion of polyolefins to distilled oils using a melting vessel. In the second stage, the oils from the first stage are gasified using a tubular reactor. The distilled oil yields of PE, PP, and PS in the first stage were 84, 89, 92 wt%, respectively, each at 470°C. The total gas yields of PE, PP, and PS in the second stage were 80, 74, and 6.2 wt%, respectively, each at 800°C. The main components of the product gas for PE and PP were methane and olefins such as ethene and propene. Some aromatic oils, including benzene, toluene, and xylene, were also produced as by-products. The amount of carbonaceous residue, or coke, was very low (less than 1 wt%). By dividing the process into two stages, the coking rate was considerably reduced compared with direct gasification of the polyolefins. Received: July 19, 2000 / Accepted: September 17, 2000  相似文献   
357.
Abstract

Isoxaflutole, the active ingredient in BALANCE® WDG and BALANCE® PRO corn herbicides and a co-formulant with the herbicide flufenacet in the product EPIC?, is readily degraded in soil and water to RPA 202248 α(-(cyclopropylcarbonyl)-2-(methylsulfonyl)-β-oxo-4-(trifluromethyl)benzenepropanenitrile). Because RPA 202248 is responsible at the molecular level for isoxaflutole's herbicidal activity it is important to understand the environmental behavior of the degradation product. Laboratory studies suggest that RPA 202248 is stable to hydrolysis and photolysis in aqueous systems and hence poses a possible environmental concern. As part of a program of work towards understanding the actual field situation, an outdoor microcosm study was carried out. Over the course of the 29-day study, residues remained predominantly in the aqueous phase. A slow but steady degradation of RPA 202248 was observed leading to the formation of RPA 203328 (2-methylsulfonyl-4-trifluoromethylbenzoic acid), which has no herbicidal activity. The half-life of RPA 202248 was calculated to be 103 days. These findings indicate that aqueous degradation should be considered as a potential route of dissipation when assessing the fate of RPA 202248 in large scale impounded water bodies, such as ponds, lakes, or reservoirs in the Mid-West Corn Belt.  相似文献   
358.
利用涡度相关系统对南京地区冬小麦田和裸土期O3干沉降过程进行观测的基础上,引入Surfatm-O3干沉降模型,对其叶片气孔阻力(Rsleaf)、土壤阻力(Rsoil)和表面阻力(Rcut)的公式进行参数化修订和验证,开展了冬小麦主要生育期的总O3通量(FO3)、干沉降速率(Vd)及其不同沉降通道分配的模拟,并间接分析了土壤排放的NO与O3的化学反应对O3干沉降过程的影响.结果表明:冬小麦田FO3和Vd的实测值与模拟值趋势相似,平均实测和模拟Vd值分别为0.39和0.37cm/s,模拟值比实测值低估5.3%,其中每一个独立阻力公式的模拟效果均较好.平均非气孔沉降(表面沉降和土壤沉降)是O3干沉降主要的沉降通道,占总O3通量的68.8%,表面沉降占非气孔沉降的46.7%;平均绿叶和黄叶气孔沉降分别占总O3通量的28.6%和2.6%.白天非气孔沉降比例减小至占总O3通量的58.8%,绿叶和黄叶的气孔沉降比例比值增大,分别占总O3通量的37.7%和3.5%.夜晚表面沉降和土壤沉降分别占总O3通量的64.3%和35.7%.土壤排放的NO会与O3产生化学反应,对O3干沉降过程产生影响,需要在今后的O3干沉降模型中考虑.  相似文献   
359.
刘霞  樊金红 《中国环境科学》2018,38(5):1704-1711
采用乙二胺二琥珀酸(EDDS)强化Fe0-Al0体系还原水溶液中的O2产生H2O2和·OH等活性氧(ROS)的绿色高级氧化工艺,以4-氯酚(4-CP)模拟废水为研究对象,考察了溶液的初始pH值、铁铝的质量比、EDDS投加量和4-CP的初始浓度等因素对4-CP降解的影响.采用电子自旋共振(ESR)法、苯甲酸捕捉法以及4-CP的降解产物等证实了ROS的产生及4-CP的降解机制.结果表明:EDDS强化Fe0-Al0/O2体系对4-CP的去除率随溶液初始pH的升高而降低,但在pH=2.5~9范围内,始终具有较好的4-CP去除率;随Fe0:Al0质量比增加4-CP的去除率先增大后减小,最佳质量比为4:1;随EDDS投加量和4-CP初始浓度增加,4-CP的去除率增大;EDDS可使体系的高级氧化能力提高9倍,在初始pH=2.5、Fe0=8g/L、Al0=2g/L、EDDS=1.5mmol/L条件下,反应3h后100mg/L 4-CP的去除率和脱氯率均达到近100%..  相似文献   
360.
A Health Index/Risk Evaluation Tool (HIRET) has been developed for the integration of risk assessment and spatial planning using GIS capabilities. The method is meant to assist decision makers and site owners in the evaluation of potential human health risk with respect to land use. Human health risk defined as the potential adverse effects on human life or health is generally accepted as the most important aspect for site assessment and planning of remediation strategies. It concerns polluted sites that endanger human health on one hand and derelict land that does not cause the immediate risk on the other hand. In current state-of-the-art risk-assessment, long-term spatial and temporal changes of risks, in relation to changes in contamination patterns and land use functions, are not taken into account. The aim of this paper is to demonstrate the methodology developed for human health risk assessment in aspect of spatial and temporal domain. HIRET was developed as an extension for ESRI software ArcView 3.2 and allows performing dynamic human health risk assessment in long-term period, which is relevant for land use planning. The paper illustrates how such methodology can assist in environmental decision-making to enhance the efficiency of contaminated land management. A case study of contaminated site is given showing how data can be used within a GIS framework to produce maps indicating areas of potential human health risk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号