全文获取类型
收费全文 | 525篇 |
免费 | 51篇 |
国内免费 | 322篇 |
专业分类
安全科学 | 59篇 |
废物处理 | 33篇 |
环保管理 | 104篇 |
综合类 | 439篇 |
基础理论 | 63篇 |
环境理论 | 1篇 |
污染及防治 | 151篇 |
评价与监测 | 19篇 |
社会与环境 | 26篇 |
灾害及防治 | 3篇 |
出版年
2024年 | 3篇 |
2023年 | 15篇 |
2022年 | 22篇 |
2021年 | 34篇 |
2020年 | 27篇 |
2019年 | 33篇 |
2018年 | 53篇 |
2017年 | 53篇 |
2016年 | 67篇 |
2015年 | 47篇 |
2014年 | 70篇 |
2013年 | 61篇 |
2012年 | 54篇 |
2011年 | 40篇 |
2010年 | 37篇 |
2009年 | 50篇 |
2008年 | 34篇 |
2007年 | 28篇 |
2006年 | 28篇 |
2005年 | 22篇 |
2004年 | 10篇 |
2003年 | 27篇 |
2002年 | 13篇 |
2001年 | 13篇 |
2000年 | 13篇 |
1999年 | 8篇 |
1998年 | 8篇 |
1997年 | 4篇 |
1996年 | 6篇 |
1995年 | 3篇 |
1994年 | 5篇 |
1993年 | 4篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1979年 | 1篇 |
排序方式: 共有898条查询结果,搜索用时 12 毫秒
71.
新型单室无质子膜微生物燃料电池性能研究 总被引:4,自引:1,他引:4
采用不锈钢金属丝阳极构建了管状单室无质子交换膜空气阴极微生物燃料电池(MFC),并以葡萄糖为唯一电子供体,研究MFC的性能.在室温下,初始ρ(CODCr)为496 mg/L,外接电阻为1 000 Ω时,该MFC可以连续产电,最高电压达235.11 mV,开路电压为461.00 mV,内电阻约2 820 Ω.实验条件下测得该MFC的最大功率密度为137.1 mW/m2,库仑效率为32.4%.采用该MFC进行了啤酒酿造废水处理对比实验,在进水ρ(CODCr)为15 900 mg/L,停留时间为96 h下,MFC对废水CODCr的去除率达40%~55%,比厌氧生物处理效率高5%~10%.表明MFC技术可以在获得电能的同时,强化有机废水的生物处理过程. 相似文献
72.
This paper examines the energy and carbon balance of two residential house alternatives; a typical wood frame home using more conventional materials (brick cladding, vinyl windows, asphalt shingles, and fibreglass insulation) and a similar wood frame house that also maximizes wood use throughout (cedar shingles and siding, wood windows, and cellulose insulation) in place of the more typical materials used – a wood-intensive house. Carbon emission and fossil fuel consumption balances were established for the two homes based on the cumulative total of three subsystems: (1) forest harvesting and regeneration; (2) cradle-to-gate product manufacturing, construction, and replacement effects over a 100-year service life; and (3) end-of-life effects – landfilling with methane capture and combustion or recovery of biomass for energy production.The net carbon balance of the wood-intensive house showed a complete offset of the manufacturing emissions by the credit given to the system for forest re-growth. Including landfill methane emissions, the wood-intensive life cycle yielded 20 tons of CO2e emissions compared to 72 tons for the typical house. The wood-intensive home's life cycle also consumed only 45% of the fossil fuels used in the typical house.Diverting wood materials from the landfill at the end of life improved the life cycle balances of both the typical and wood-intensive houses. The carbon balance of the wood-intensive house was 5.2 tons of CO2e permanently removed from the atmosphere (a net carbon sink) as compared to 63.4 of total CO2e emissions for the typical house. Substitution of wood fuel for natural gas and coal in electricity production led to a net energy balance of the wood-intensive house that was nearly neutral, 87.1 GJ energy use, 88% lower than the scenario in which the materials were landfilled.Allocating biomass generation and carbon sequestration in the forest on an economic basis as opposed to a mass basis significantly improves the life cycle balances of both houses. Employing an economic allocation method to the forest leads to 3–5 times greater carbon sequestration and fossil fuel substitution attributable to the house, which is doubled in forestry regimes that remove stumps and slash as fuel. Thus, wood use has the potential to create a significantly negative carbon footprint for a house up to the point of occupancy and even offset a portion of heating and cooling energy use and carbon emissions; the wood-intensive house is energy and carbon neutral for 34–68 years in Ottawa and has the potential to be a net carbon sink and energy producer in a more temperate climate like San Francisco. 相似文献
73.
Andreas Züttel 《Mitigation and Adaptation Strategies for Global Change》2007,12(3):343-365
Hydrogen storage and transportation or distribution is closely linked together. Hydrogen can be distributed continuously in
pipelines or batch wise by ships, trucks, railway or airplanes. All batch transportation requires a storage system but also
pipelines can be used as pressure storage system. Hydrogen exhibits the highest heating value per weight of all chemical fuels.
Furthermore, hydrogen is regenerative and environment friendly. There are two reasons why hydrogen is not the major fuel of
toady’s energy consumption: First of all, hydrogen is just an energy carrier. And, although it is the most abundant element
in the universe, it has to be produced, since on earth it only occurs in the form of water. This implies that we have to pay
for this energy, which results in a difficult economic task, because since the industrialization we are used to consuming
energy for free. The second difficulty with hydrogen as an energy carrier is the low critical temperature of 33 K, i.e. hydrogen
is a gas at room temperature. For mobile and in many cases also for stationary applications the volumetric and gravimetric
density of hydrogen in a storage system is crucial. Hydrogen can be stored by six different methods and phenomena: high pressure
gas cylinders (up to 800 bar), liquid hydrogen in cryogenic tanks (at 21 K), adsorbed hydrogen on materials with a large specific
surface area (at T < 100 K), absorbed on interstitial sites in a host metal (at ambient pressure and temperature), chemically bond in covalent
and ionic compounds (at ambient pressure), oxidation of reactive metals e.g. Li, Na, Mg, Al, Zn with water. These metals easily
react with water to the corresponding hydroxide and liberate the hydrogen from the water. Finally, the metal hydroxides can
be thermally reduced to the metals in a solar furnace. 相似文献
75.
Higher concentrations of Hg can be emitted from coal pyrolysis or gasification than from coal combustion, especially elemental Hg. Highly efficient Hg removal technology from coal-derived fuel gas is thus of great importance. Based on the very excellent Hg removal ability of Pd and the high adsorption abilities of activated carbon(AC) for H2 S and Hg, a series of Pd/AC sorbents was prepared by using pore volume impregnation, and their performance in capturing Hg and H2 S from coal-derived fuel gas was investigated using a laboratory-scale fixed-bed reactor. The effects of loading amount, reaction temperature and reaction atmosphere on Hg removal from coal-derived fuel gas were studied. The sorbents were characterized by N2 adsorption, X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS). The results indicated that the efficiency of Hg removal increased with the increasing of Pd loading amount, but the effective utilization rate of the active component Pd decreased significantly at the same time. High temperature had a negative influence on the Hg removal. The efficiency of Hg removal in the N2-H2S-H2-CO-Hg atmosphere(simulated coal gas) was higher than that in N2-H2S-Hg and N2-Hg atmospheres, which showed that H2 and CO, with their reducing capacity, could benefit promote the removal of Hg. The XPS results suggested that there were two different ways of capturing Hg over sorbents in N2-H2S-Hg and N2-Hg atmospheres. 相似文献
76.
77.
基于油耗调查的2010年天津市农业机械排放研究 总被引:1,自引:0,他引:1
通过问卷调查,采用基于燃油消耗量的方法估算出天津市2010年农业机械氮氧化物(NOx)和颗粒物(PM)的总排放量.2010年天津市农业机械总保有量为57.5万台,其中种植业机械最大约占52.5%;总动力为588万kW,运输机械占比最大为47.3%.估算出2010年天津市农业机械总油耗(主要为柴油)为6.7万t,其中运输机械耗油量为4.5万t.再根据燃油消耗量估算了天津2010年农业机械污染物排放量,NOx和PM年排放量分别为3470t和303t. 相似文献
78.
通过构建填料型微生物燃料电池(MFC),首次对以喹啉为燃料时的MFC阳极表面的微生物群落进行了分析.PCR-DGGE的试验结果表明,随着燃料的改变,微生物群落也发生改变.当以喹啉和葡萄糖的混合溶液稳定地作为燃料时,由于受到喹啉毒性的抑制,微生物多样性降低,优势菌也发生明显的改变.与葡萄糖共基质相比,以单一喹啉为燃料时的阳极微生物优势菌落发生明显改变.新增加一类菌,这类菌与Pseudomonas sp. DIC5RS 的同源性为100%,推测该菌在单一喹啉为MFC燃料时喹啉的降解过程中起到关键作用. 相似文献
79.
双筒型微生物燃料电池生物阴极反硝化研究 总被引:12,自引:0,他引:12
利用双筒型微生物燃料电池生物阴极实现电反硝化脱氮,考察外电阻大小、进水硝酸盐和有机物浓度对产电和反硝化的影响.当外电阻从50Ω下降到5Ω,硝酸盐去除速率由0.26 mg/(L.h)上升到0.76 mg/(L.h);在外电阻为5Ω时,亚硝氮积累浓度达55 mg/L;硝酸盐起始浓度在20~120 mg/L时硝酸盐降解满足0级反应,硝酸盐浓度对MFC产电影响不显著;亚硝氮的积累浓度随硝酸盐起始浓度增加而增加,最高可达到35 mg/L;有机物的加入能提高阴极反硝化速度,避免亚硝酸盐积累,对MFC产电影响不大. 相似文献
80.