首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   2篇
  国内免费   5篇
安全科学   20篇
废物处理   7篇
环保管理   20篇
综合类   25篇
基础理论   14篇
污染及防治   7篇
评价与监测   3篇
社会与环境   6篇
灾害及防治   1篇
  2023年   2篇
  2022年   2篇
  2021年   1篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   6篇
  2014年   3篇
  2013年   11篇
  2012年   1篇
  2011年   4篇
  2010年   4篇
  2009年   9篇
  2008年   3篇
  2007年   5篇
  2006年   3篇
  2003年   4篇
  2002年   8篇
  2001年   2篇
  2000年   4篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有103条查询结果,搜索用时 0 毫秒
101.
During the coming years, a management and remediation strategy for the Chernobyl cooling pond (CP) will be implemented. Remediation options include a controlled reduction in surface water level of the cooling pond and stabilisation of exposed sediments. In terrestrial soils, fuel particles deposited during the Chernobyl accident have now almost completely disintegrated. However, in the CP sediments the majority of 90Sr activity is still in the form of fuel particles. Due to the low dissolved oxygen concentration and high pH, dissolution of fuel particles in the CP sediments is significantly slower than in soils. After the planned cessation of water pumping from the Pripyat River to the Pond, significant areas of sediments will be drained and exposed to the air. This will significantly enhance the dissolution rate and, correspondingly, the mobility and bioavailability of radionuclides will increase with time. The rate of acidification of exposed bottom sediments was predicted on the basis of acidification of similar soils after liming. Using empirical equations relating the fuel particle dissolution rate to soil and sediment pH allowed prediction of fuel particle dissolution and 90Sr mobilisation for different remediation scenarios. It is shown that in exposed sediments, fuel particles will be almost completely dissolved in 15–25 years, while in parts of the cooling pond which remain flooded, fuel particle dissolution will take about a century.  相似文献   
102.
Fuel cells can be highly efficient energy conversion devices. However, the environmental benefit of utilising fuel cells for energy conversion is completely dependent on the source of the fuel. Hydrogen is the ideal fuel for fuel cells but the current most economical methods of producing hydrogen also result in the production of significant amounts of carbon dioxide. Utilising biomass to produce the fuel for fuel cell systems offers an option that is technically feasible, potentially economically attractive and greenhouse gas neutral. High-temperature fuel cells that are able to operate with carbon monoxide in the feed are well suited to these applications. Furthermore, because they do not require noble metal catalysts, the cost of high-temperature fuel cells has the greatest potential to become competitive in the near future compared to other types of fuel cells. It is, however, extremely difficult to assess the economic feasibility of biomass-fuelled fuel cell systems because of a lack of published cost information and uncertainty in the predicted cost per kW of the various types of fuel cells for large volume production methods. From the scant information available it appears that the current cost for fuel-cell systems operating on anaerobic digester gas is about US$2,500 per kW compared to a target price of US$1,200 required to compete with conventional technologies.  相似文献   
103.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号