首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   631篇
  免费   55篇
  国内免费   262篇
安全科学   134篇
废物处理   53篇
环保管理   67篇
综合类   434篇
基础理论   85篇
污染及防治   149篇
评价与监测   20篇
社会与环境   3篇
灾害及防治   3篇
  2023年   16篇
  2022年   15篇
  2021年   35篇
  2020年   36篇
  2019年   29篇
  2018年   18篇
  2017年   27篇
  2016年   31篇
  2015年   58篇
  2014年   45篇
  2013年   65篇
  2012年   61篇
  2011年   53篇
  2010年   22篇
  2009年   40篇
  2008年   45篇
  2007年   59篇
  2006年   60篇
  2005年   31篇
  2004年   29篇
  2003年   24篇
  2002年   19篇
  2001年   13篇
  2000年   24篇
  1999年   14篇
  1998年   12篇
  1997年   17篇
  1996年   6篇
  1995年   4篇
  1994年   11篇
  1993年   8篇
  1992年   6篇
  1991年   6篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有948条查询结果,搜索用时 15 毫秒
41.
超声波-H2O2协同作用处理孔雀绿废水   总被引:2,自引:0,他引:2  
范拴喜  江元汝 《化工环保》2007,27(5):404-408
采用超声波(US)-H2O2协同作用处理含孔雀绿的废水(简称废水);考察了H2O2加入量、US功率、反应温度、反应时间对废水色度、COD去除率的影响,并对US-H2O2体系降解孔雀绿的机理进行了探讨。实验结果表明:在US作用下,H2O2加入量对废水色度、COD去除率的影响较大;废水色度、COD去除率均随US功率和反应时问的增加而提高;在US~H2O2体系中,低温对处理废水有利,高温反而不利;US—H2O2处理废水具有协同作用。在废水量为100mL、pH为7.3、反应温度为40℃、H2O2加入量为10mL、US功率为240W、反应时间60min的条件下对废水进行处理,废水COD、色度去除率分别为97.5%,98.8%。  相似文献   
42.
以膨润土为辅助添加剂固化/稳定化污泥的试验研究   总被引:15,自引:1,他引:14  
朱伟  林城  李磊  大木宜章 《环境科学》2007,28(5):1020-1025
针对传统以水泥固化污泥,带来的水泥用量大与固化体的浸出液pH过高等问题,提出了以膨润土为添加剂辅助水泥固化/稳定化污泥的思路.通过开展无侧限抗压强度试验、毒性浸出试验,测量掺入膨润土后污泥固化体的强度、重金属浸出率、浸出液COD及pH值,研究该固化/稳定化方法的效果.结果表明,膨润土的掺入极大地提高了固化体的抗压强度,将掺入量为0.4(相对污泥的质量比)的水泥一半用膨润土替代时,固化体的强度提高了6左右.体积安定性也能够满足要求.随膨润土掺入量增加,固化体中锌、铅的浸出率与浸出液的pH值呈现不断减小的趋势,锌与铅的浸出率分别由6.9%下降至0.25%,9.6%下降至5%,pH值由12.3下降至12.1.在强碱条件下及烘干或风干条件下,铜会随着有机物的分解而析出,从而增加铜的浸出率,而膨润土的加入能弥补水泥造成的强碱环境及风干或烘干过程对固化污泥中铜的稳定产生的不利影响.  相似文献   
43.
在实验条件下采用生态毒理学和生物化学方法,选用常见的环境污染物多环芳烃蒽,以太平洋牡蛎(Crassostrea gigas)为实验材料进行毒理实验.研究了太平洋牡蛎消化腺、鳃、唇瓣和肌肉4种不同组织中的3种抗氧化酶--超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)对蒽胁迫的敏感性;同时研究了4种不同组织膜脂过氧化的差异.结果表明:(1)4种不同组织中3种不同抗氧化酶对蒽敏感性有显著差异性.(2)4种不同组织的膜脂过氧化伤害程度表现为:消化腺>鳃>唇瓣>肌肉.  相似文献   
44.
Carbon mineralization and its response to climatic warming have been receiving global attention for the last decade. Although the virtual influence of temperature effect is still in great debate, little is known on the mineralization of organic carbon (SOC) of paddy soils of China under warming. SOC mineralization of three major types of China's paddy soils is studied through laboratory incubation for 114 d under soil moisture regime of 70% water holding capacity at 20℃ and 25℃ respectively. The carbon that mineralized as CO2 evolved was measured every day in the first 32 d and every two days in the following days. Carbon mineralized during the 114 d incubation ranged from 3.51 to 9.22 mg CO2-C/gC at 20℃ and from 4.24 to 11.35 mg CO2-C/gC at 25℃ respectively; and a mineralizable C pool in the range of 0.24 to 0.59 gC/kg, varying with different soils. The whole course of C mineralization in the 114 d incubation could be divided into three stages of varying rates, representing the three subpools of the total mineralizable C: very actively mineralized C at 1-23 d, actively tnineralized C at 24--74 d and a slowly mineralized pool with low and more or less stabilized C mineralization rate at 75-114 d. The calculated Q10 values ranged from 1.0 to 2.4, varying with the soil types and N status. Neither the total SOC pool nor the labile C pool could account for the total mineralization potential of the soils studied, despite a well correlation of labile C with the shortly and actively mineralized C, which were shown in sensitive response to soil warming. However, the portion of microbial C pool and the soil C/N ratio controlled the C mineralization and the temperature dependence. Therefore, C sequestration may not result in an increase of C mineralization proportionally. The relative control of C bioavailability and microbial metabolic activity on C mineralization with respect to stabilization of sequestered C in the paddy soils of China is to be further studied.  相似文献   
45.
This study presents a comparative analysis of sizing of metal hydride tank filled with different alloys. Alloys include solid solutions and intermetallic compounds of the generic families AB5, AB2, AB, A2B. The effects of the different alloys on the sizing of metal hydride hydrogen storage tanks are complicated and depend on many factors. In this paper, a thermoeconomic optimization analysis with a simple algebraic formula was presented for the estimation of optimum metal hydride tank surface area for heat transfer enhancement. The optimum area of the metal hydride tank filled with commercially available different alloys (LaN5, Ti0,98Zr0,02V0,43Fe0,09Cr0,05Mn1,5, TiFe, Mg2NiH4) was evaluated and compared by the developed method. The optimum net savings and the value of payback were determined for four alloys. It is found that mathematical model can be employed for the determination of optimum metal hydride tank design and increasing net savings according to alloy types. The optimum areas of the tanks filled with four alloys (LaN5, Ti0,98Zr0,02V0,43Fe0,09Cr0,05Mn1,5, TiFe, Mg2NiH4) were calculated as 0.136, 0.130, 0.133, and 0.173 m2, respectively. The optimum net savings for tanks filled with four alloys (LaN5, Ti0,98Zr0,02V0,43Fe0,09Cr0,05Mn1,5, TiFe, Mg2NiH4) are about 461.0, 409.3, 419.6, and 979.6 $ and the values of payback are about 1.98, 2.1, 2.17, and 1.37 years, respectively. Excessive area of the metal hydride tank would not be as economical as the optimum tank area. Thermal management of metal hydride tank must be designed for optimum points calculated at which maximum savings occur.  相似文献   
46.
Background, aim, and scope  Ionic liquids are regarded as essentially “green” chemicals because of their insignificant vapor pressure and, hence, are a good alternative to the emissions of toxic conventional volatile solvents. Not only because of their attractive industrial applications, but also due to their very high stability, ionic liquids could soon become persistent contaminants of technological wastewaters and, moreover, break through into natural waters following classical treatment systems. The removal of harmful organic pollutants has forced the development of new methodologies known as advanced oxidation processes (AOPs). Among them, the Fenton and Fenton-like reactions are usually modified by the use of a higher hydrogen peroxide concentration and through different catalysts. The aim of this study was to assess the effect of hydrogen peroxide concentration on degradation rates in a Fenton-like system of alkylimidazolium ionic liquids with alkyl chains of varying length and 3-methyl-N-butylpyridinium chloride. Materials and methods  The ionic liquids were oxidized in dilute aqueous solution in the presence of two different concentrations of hydrogen peroxide. All reactions were performed in the dark to prevent photoreduction of Fe(III). The concentrations of ionic liquids during the process were monitored with high-performance liquid chromatography. Preliminary degradation pathways were studied with the aid of 1H NMR. Results  Degradation of ionic liquids in this system was quite effective. Increasing the H2O2 concentration from 100 to 400 mM improved ionic liquid degradation from 57–84% to 87–100% after 60 min reaction time. Resistance to degradation was weaker, the shorter the alkyl chain. Discussion  The compound omimCl was more resistant to oxidation then other compounds, which suggests that the oxidation rates of imidazolium ionic liquids by OH· are structure-dependent and are correlated with the n-alkyl chain length substituted at the N-1-position. The level of degradation was dependent on the type of head group. Replacing the imidazolium head group with pyridinium increased resistance to degradation. Nonetheless, lengthening the alkyl chain from four to eight carbons lowered the rate of ionic liquid degradation to a greater extent than changing the head group from imidazolium to pyridinium. 1H-NMR spectra show, in the first stage of degradation, that it is likely that radical attack is nonspecific, with any one of the carbon atoms in the ring and the n-alkyl chain being susceptible to attack. Conclusions  The proposed method has proven to be an efficient and reliable method for the degradation of imidazolium ionic liquids by a Fenton-like reagent deteriorated with lengthening n-alkyl substituents and by replacing the imidazolium head group with pyridinium. The enhanced resistance of 1-butyl-3-methylpyridinium chloride when the resistance of imidazolium ionic liquids decreases with increasing H2O2 concentration is probably indicative of a change in the degradation mechanism in a vigorous Fenton-like system. H-NMR spectra showed, in the first stage of degradation, that radical attack is nonspecific, with any one of the carbon atoms in the ring and the n-alkyl chain being susceptible to attack. Recommendations and perspectives  Since ionic liquids are now one of the most promising alternative chemicals of the future, the degradation and waste management studies should be integrated into a general development research of these chemicals. In the case of imidazolium and pyridinium ionic liquids that are known to be resistant to bio- or thermal degradation, studies in the field of AOPs should assist the future structural design as well as tailor the technological process of these chemicals  相似文献   
47.
以钛酸四丁酯为前驱物,采用水解沉淀法制备了N掺杂TiO_2光催化剂和H_2O_2改性的N掺杂TiO_2光催化剂.实验表明,H_2O_2改性的N掺杂TiO_2光催化剂的最佳制备条件为:氨水(质量分数28%)加入量20 mL,焙烧温度500 ℃,H_2O_2(质量分数30%)加入量2.0 mL.日光下,N掺杂TiO_2光催化剂及H_2O_2改性的N掺杂TiO_2光催化剂在反应90 min时的活性红紫去除率达99%,它们对活性红紫的去除率远高于P_(25)TiO_2光催化剂.H_2O_2改性的N掺杂TiO_2光催化剂中N质量分数比改性前明显提高,制备的两种催化剂中不仅含有N元素,同时还含有C和H元素.  相似文献   
48.
垃圾焚烧飞灰处理处置研究进展   总被引:1,自引:0,他引:1  
针对作为危险废物的垃圾焚烧飞灰,介绍了近年来国内外对其进行处理处置的研究情况.飞灰的固化/稳定化处理主要从水泥(沥青)固化、熔融固化及化学药剂固化几方面进行论述,飞灰中重金属的提取主要从酸碱浸提、生物浸提、螯合剂浸提及电渗析法提取几方面进行论述.  相似文献   
49.
The stabilization of hydrogen peroxide was investigated as a basis for enhancing its downgradient transport and contact with contaminants during catalyzed H(2)O(2) propagations (CHP) in situ chemical oxidation (ISCO). Stabilization of hydrogen peroxide was investigated in slurries containing four characterized subsurface solids using phytate, citrate, and malonate as stabilizing agents after screening ten potential stabilizers. The extent of hydrogen peroxide stabilization and the most effective stabilizer were solid-specific; however, phytate was usually the most effective stabilizer, increasing the hydrogen peroxide half-life to as much as 50 times. The degree of stabilization was nearly as effective at 10 mM concentrations as at 250 mM or 1 M concentrations. The effect of stabilization on relative rates of hydroxyl radical activity varied between the subsurface solids, but citrate and malonate generally had a greater positive effect than phytate. The effect of phytate, citrate, and malonate on the relative rates of superoxide generation was minimal to somewhat negative, depending on the solid. The results of this research demonstrate that the stabilizers phytate, citrate, and malonate can significantly increase the half-life of hydrogen peroxide in the presence of subsurface solids during CHP reactions while maintaining a significant portion of the reactive oxygen species activity. Use of these stabilizers in the field will likely improve the delivery of hydrogen peroxide and downgradient treatment during CHP ISCO.  相似文献   
50.
An accidental hydrogen release within an equipment enclosure may result in the presence of detonable mixture in a confined environment. From a safety standpoint, it is then useful to assess the potential for damage. In that context, numerical simulation of the sequence of events subsequent to detonative ignition provides a useful tool, although with obvious limitations. This article describes the procedure, summarizes two case studies, and reviews the limitations. First, a hydrogen dispersion pattern is obtained from numerical simulation of dispersion, using a commercial package designed primarily for incompressible flow. This dispersion cloud is then used as the initial condition in an inviscid, compressible, reactive flow simulation. To force detonative ignition, a sufficiently large amount of energy is deposited in a small region that corresponds to the ignition location. Chemistry is modeled using a single step Arrhenius model. Because the wave thickness is small compared with the computational domain, a fine mesh is needed, limiting the practicality of the process to two-dimensional geometries. This is the most significant limitation; it is conservative. The two cases described in the paper include an electrolyzer, in which a small release occurs, leading potentially to some damage to the enclosure, and a reformer, in which the consequences are potentially more serious.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号