全文获取类型
收费全文 | 944篇 |
免费 | 130篇 |
国内免费 | 140篇 |
专业分类
安全科学 | 2篇 |
废物处理 | 2篇 |
环保管理 | 626篇 |
综合类 | 370篇 |
基础理论 | 76篇 |
污染及防治 | 14篇 |
评价与监测 | 55篇 |
社会与环境 | 62篇 |
灾害及防治 | 7篇 |
出版年
2024年 | 7篇 |
2023年 | 17篇 |
2022年 | 18篇 |
2021年 | 29篇 |
2020年 | 28篇 |
2019年 | 36篇 |
2018年 | 16篇 |
2017年 | 35篇 |
2016年 | 37篇 |
2015年 | 54篇 |
2014年 | 27篇 |
2013年 | 63篇 |
2012年 | 69篇 |
2011年 | 51篇 |
2010年 | 42篇 |
2009年 | 54篇 |
2008年 | 39篇 |
2007年 | 43篇 |
2006年 | 68篇 |
2005年 | 48篇 |
2004年 | 44篇 |
2003年 | 54篇 |
2002年 | 56篇 |
2001年 | 30篇 |
2000年 | 38篇 |
1999年 | 26篇 |
1998年 | 21篇 |
1997年 | 19篇 |
1996年 | 13篇 |
1995年 | 16篇 |
1994年 | 9篇 |
1993年 | 7篇 |
1992年 | 7篇 |
1991年 | 6篇 |
1990年 | 9篇 |
1989年 | 6篇 |
1988年 | 6篇 |
1987年 | 8篇 |
1984年 | 5篇 |
1983年 | 7篇 |
1982年 | 5篇 |
1981年 | 3篇 |
1980年 | 6篇 |
1979年 | 4篇 |
1977年 | 4篇 |
1976年 | 2篇 |
1975年 | 4篇 |
1974年 | 6篇 |
1971年 | 4篇 |
1970年 | 2篇 |
排序方式: 共有1214条查询结果,搜索用时 15 毫秒
911.
L. Donald Duke Molly M. Kihara 《Journal of the American Water Resources Association》1998,34(3):661-676
ABSTRACT: Nonstorm water discharges to municipal separate storm sewer systems (MS4s) are notable for spatial and temporal variability in volume, pollutant type, pollutant concentration, and activity of origin. The objective of this paper was to determine whether current technical knowledge and existing U.S. policy support an improved regulatory approach. The proposed policy would use type of discharge as a regulatory basis, merging the concepts of allowability of de minimis discharges and type-based statewide consistent rules. Specific research objectives were to comprehensively identify discharge types, characterize their prevalence in California, analyze relevant local and regional regulatory guidelines, and systematically evaluate opinions of experts about potential water quality impacts. Results demonstrate nonstorm water discharges were widespread in at least one sector, industrial facilities subject to a state permit; one discharge for every four facilities was reported in 1995, even though the permit explicitly prohibits such discharges. Clear consensus exists for minimal water quality concern for some discharge types when considering both municipal guidelines and experts’ opinions. In particular, condensate from a wide range of equipment and discharges from fire fighting equipment testing were found to be of low concern. Discharge types with consensus high concern were largely limited to discharges prohibited under other regulations, such as wastewater and hazardous waste management controls. Some discharge types where no consensus was identified, such as landscape irrigation, nevertheless generated concern for water quality impacts and appear to be relatively widespread. Available information supports technical feasibility of the proposed policy because at least some discharge types show strong consensus for de minimis impacts among regulatory guidelines and opinions of technical experts. 相似文献
912.
H. B. Manguerra B. A. Engel 《Journal of the American Water Resources Association》1998,34(5):1149-1162
ABSTRACT: The use of continuous time, distributed parameter hydrologic models like SWAT (Soil and Water Assessment Tool) has opened several opportunities to improve watershed modeling accuracy. However, it has also placed a heavy burden on users with respect to the amount of work involved in parameterizing the watershed in general and in adequately representing the spatial variability of the watershed in particular. Recent developments in Geographical Information Systems (GIS) have alleviated some of the difficulties associated with managing spatial data. However, the user must still choose among various parameterization approaches that are available within the model. This paper describes the important parameterization issues involved when modeling watershed hydrology for runoff prediction using SWAT with emphasis on how to improve model performance without resorting to tedious and arbitrary parameter by parameter calibration. Synthetic and actual watersheds in Indiana and Mississippi were used to illustrate the sensitivity of runoff prediction to spatial variability, watershed decomposition, and spatial and temporal adjustment of curve numbers and return flow contribution. SWAT was also used to predict stream runoff from actual watersheds in Indiana that have extensive subsurface drainage. The results of this study provide useful information for improving SWAT performance in terms of stream runoff prediction in a manner that is particularly useful for modeling ungaged watersheds wherein observed data for calibration is not available. 相似文献
913.
914.
Darren S Olsen Brett B. Roper Jeffrey L. Kershner Richard Henderson Eric Archer 《Journal of the American Water Resources Association》2005,41(5):1225-1236
Pebble counts have been used for a variety of monitoring projects and are an important component of stream evaluation efforts throughout the United States. The utility of pebble counts as a monitoring tool is, however, based on the monitoring objectives and the assumption that data are collected with sufficient precision to meet those objectives. Depending upon the objective, sources of variability that can limit the precision of pebble count data include substrate heterogeneity at a site, differences in substrate among sample locations within a stream reach, substrate variability among streams, differences in when the substrate sample is collected, differences in how and where technicians pick up substrate particles, and how consistently technicians measure the intermediate axis of a selected particle. This study found that each of these sources of variability is of sufficient magnitude to affect results of monitoring projects. Therefore, actions such as observer training, increasing the number of pebbles measured, evaluating several riffles within a reach, evaluating permanent sites, and narrowing the time window during which pebble counts are conducted should be considered in order to minimize variability. The failure to account for sources of variability associated with pebble counts within the study design may result in failing to meet monitoring objectives. 相似文献
915.
Modeling the Effects of Land Use Change on the Water Temperature in Unregulated Urban Streams 总被引:4,自引:0,他引:4
Robert T. LeBlanc Robert D. Brown John E. FitzGibbon 《Journal of environmental management》1997,49(4):445-469
Streams, in their natural state, are typically diverse and biologically productive environments. Streams subject to urbanization often experience degradation brought about by the cumulative effects of flow alteration, unsanitary discharge and channelization. One of the water quality parameters affected by urbanization is stream temperature. This study offers a model for predicting the impact of land use change on the temperature of non-regulated streams during extreme events. A stream temperature model was created by considering the gains and losses of thermal energy resulting from radiation, convection, conduction, evaporation and advection. A sensitivity analysis showed that out of 14 variables, shade/transmissivity of riparian vegetation, groundwater discharge, and stream width had the greatest influence on stream temperature. These same three variables are highly influenced by land use. Individual component models were developed to predict how urbanization changes stream width and baseflow discharge. Using 3-D computer modeling, a model was also developed to illustrate the effects of altering the extent and composition of riparian vegetation on streams with different orientations. By modeling these three variables as a function of urbanization, the results became inputs into the stream temperature model. The critical urban stream temperature model (CrUSTe), an aggregation of these four models, allows the prediction of stream temperature change as a result of amount, type and location of urbanization within a watershed. It has the potential to become a valuable tool for environmental managers. 相似文献
916.
V. M. F. Jacomino D. E. Fields 《Journal of the American Water Resources Association》1997,33(1):143-154
ABSTRACT: A complex watershed-scale water quality simulation model, the Hydrological Simulation Program-FORTRAN (HSPF) model, was calibrated for a 16 km2 catchment. The simulation step size was 0.33 hours with predicted and recorded hydrologic flows compared on an annual and monthly basis during a total calibration period of four years. Unguided numerical optimization when applied alone did not yield a model parameter set with acceptable predictive capability; instead, it was necessary to apply a critical process that included sensitivity analysis, numerical optimization, and testing of derived model parameter sets to evaluate their performance for periods other than those for which they were determined. Using this critical calibration process, the model was proven to have significant predictive capability. Numerical optimization is an aid for model calibration, but it must not be used blindly. 相似文献
917.
918.
France Lamy John Bolte Mary Santelmann Courtland Smith 《Journal of the American Water Resources Association》2002,38(2):517-529
ABSTRACT: Making decisions for environmental management is a complex task due to the multiplicity and diversity of technological choices. Furthermore, the exploitation of natural resources and the preservation of the natural environment imply objectives that are often in conflict within a sustainable development paradigm. Managers and other decision makers require techniques to assist them in understanding strategic decision making. This paper illustrates the use of a multiple‐objective decision‐making methodology and an integrative geographical information system‐based decision‐making tool developed to help watershed councils prioritize and evaluate restoration activities at the watershed level. Both were developed through a multidisciplinary approach. The decision‐making tool is being applied in two watersheds of Oregon's Willamette River Basin. The results suggest that multiple‐objective methods can provide a valuable tool in analyzing complex watershed management issues. 相似文献
919.
Elaine M. Brown Da Ouyang A. Jeremiah Asher Jon F. Bartholic 《Journal of the American Water Resources Association》2002,38(4):895-903
ABSTRACT: In the environmental and agricultural conservation planning process, more efficient and effective tools are needed for planners to assist private landowners with making wiser land use decisions. Current methods are slow, inefficient, and costly. Scientific techniques have not been fully implemented within the planning process, yet such plans are increasingly needed to meet water quality and Total Maximum Daily Load (TMDL) requirements. The objectives of this study are to (a) utilize the web for accessing an integrated science‐based land use decision support system; (b) link decision tools, models, and databases to the user via the web; (c) link distributed models and databases for enhanced planning efficiency; and (d) integrate the above into an easily usable and readily accessible system. The procedures resulting in the initial design involved planning expertise and focus groups' input. The system was developed in partnership with the Natural Resources Conservation Service of the U.S. Department of Agriculture and several state agencies. A survey of 150 certified conservation planners, the end users, was conducted to identify the data sets and planning tools needed. Data, tools, and models then were selected and integrated into a web accessible system. Specifically, the first generation used a web interactive Geographic Information System (GIS) that overlaid onto digital orthoquads and/or soils polygons field boundaries, transportation, hydrologic features (such as drains, rivers, lakes, etc.), and high pesticide risk runoff or infiltration areas. Conservation planners found they could save time with the system. Clients could access the system quickly to help them prepare for meeting with their planner. Previously acquiring GIS maps in some cases had been a lengthy process that limited use of the information in land use decisions. 相似文献
920.
Theodore A. Endreny Eric F. Wood 《Journal of the American Water Resources Association》2003,39(1):165-181
ABSTRACT: The Export Coefficient model (ECM) is capable of generating reasonable estimates of annual phosphorous loading simply from a watershed's land cover data and export coefficient values (ECVs). In its current form, the ECM assumes that ECVs are homogeneous within each land cover type, yet basic nutrient runoff and hydrological theory suggests that runoff rates have spatial patterns controlled by loading and filtering along the flow paths from the upslope contributing area and downslope dispersal area. Using a geographic information system (GIS) raster, or pixel, modeling format, these contributing area and dispersal area (CADA) controls were derived from the perspective of each individual watershed pixel to weight the otherwise homogeneous ECVs for phosphorous. Although the CADA‐ECM predicts export coefficient spatial variation for a single land use type, the lumped basin load is unaffected by weighting. After CADA weighting, a map of the new ECVs addressed the three fundamental criteria for targeting critical pollutant loading areas: (1) the presence of the pollutant, (2) the likelihood for runoff to carry the pollutant offsite, and (3) the likelihood that buffers will trap nutrients prior to their runoff into the receiving water body. These spatially distributed maps of the most important pollutant management areas were used within New York's West Branch Delaware River watershed to demonstrate how the CADA‐ECM could be applied in targeting phosphorous critical loading areas. 相似文献