首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   477篇
  免费   11篇
  国内免费   47篇
安全科学   16篇
废物处理   10篇
环保管理   36篇
综合类   174篇
基础理论   122篇
污染及防治   135篇
评价与监测   32篇
社会与环境   10篇
  2023年   9篇
  2022年   6篇
  2021年   18篇
  2020年   6篇
  2019年   10篇
  2018年   8篇
  2017年   15篇
  2016年   31篇
  2015年   16篇
  2014年   18篇
  2013年   31篇
  2012年   23篇
  2011年   53篇
  2010年   34篇
  2009年   37篇
  2008年   52篇
  2007年   32篇
  2006年   22篇
  2005年   14篇
  2004年   18篇
  2003年   17篇
  2002年   7篇
  2001年   7篇
  2000年   13篇
  1999年   3篇
  1998年   2篇
  1997年   8篇
  1996年   5篇
  1995年   5篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1986年   1篇
  1985年   2篇
排序方式: 共有535条查询结果,搜索用时 312 毫秒
51.
Abstract: The probability of persistence of many species of hibernating bats in the United States is greatly reduced by an emerging infectious disease, white‐nose syndrome (WNS). In the United States WNS is rapidly spreading and is associated with a psychrophilic fungus, Geomyces destructans. WNS has caused massive mortality of bats that hibernate. Efforts to control the disease have been ineffective. The culling of bats in hibernacula has been proposed as a way to break the transmission cycle or slow the spread of WNS. We formulated a disease model to examine the efficacy of culling to abate WNS in bat populations. We based the model dynamics on disease transmission in maternity roosts, swarms, and hibernacula, which are the arenas of contact among bats. Our simulations indicated culling will not control WNS in bats primarily because contact rates are high among colonial bats, contact occurs in multiple arenas, and periodic movement between arenas occurs. In general, culling is ineffective in the control of animal diseases in the wild.  相似文献   
52.
Abstract: Given their physiological requirements, limited dispersal abilities, and hydrologically sensitive habitats, amphibians are likely to be highly sensitive to future climatic changes. We used three approaches to map areas in the western hemisphere where amphibians are particularly likely to be affected by climate change. First, we used bioclimatic models to project potential climate‐driven shifts in the distribution of 413 amphibian species based on 20 climate simulations for 2071–2100. We summarized these projections to produce estimates of species turnover. Second, we mapped the distribution of 1099 species with restricted geographic ranges. Finally, using the 20 future climate‐change simulations, we mapped areas that were consistently projected to receive less seasonal precipitation in the coming century and thus were likely to have altered microclimates and local hydrologies. Species turnover was projected to be highest in the Andes Mountains and parts of Central America and Mexico, where, on average, turnover rates exceeded 60% under the lower of two emissions scenarios. Many of the restricted‐range species not included in our range‐shift analyses were concentrated in parts of the Andes and Central America and in Brazil's Atlantic Forest. Much of Central America, southwestern North America, and parts of South America were consistently projected to experience decreased precipitation by the end of the century. Combining the results of the three analyses highlighted several areas in which amphibians are likely to be significantly affected by climate change for multiple reasons. Portions of southern Central America were simultaneously projected to experience high species turnover, have many additional restricted‐range species, and were consistently projected to receive less precipitation. Together, our three analyses form one potential assessment of the geographic vulnerability of amphibians to climate change and as such provide broad‐scale guidance for directing conservation efforts.  相似文献   
53.
A 6-month greenhouse pot trial was performed, aimed at screening appropriate Sesbania species for remediation of Pb/Zn and Cu mine tailings. Performances of young seedlings of four Sesbania species (S. cannabina, S. grandiflora, S. rostrata, and S. sesban) were compared with and without inoculation of rhizobia. Seedlings were planted in two types of tailings amended with garden soil or garden soil mixed with river sediment. The results indicated that inoculated plants generally produced a higher biomass than samples without inoculation. Pb/Zn mine tailings containing rather high concentrations of total and water-soluble Cu, Pb, and Zn were toxic to plant growth compared with Cu mine tailings, according to the growth performance of the four species. Sesbania sesban and S. rostrata showed superior growth performance, compared to the other two species. Thus, they can serve as pioneer species to modify the barren environment, by providing organic matter and essential nutrients such as nitrogen, upon decomposition, in a relatively short period of time. This is especially true for S. rostrata, which is an annual plant that forms both stem and root nodules. However, a longer-term field trial should be conducted to investigate if superior species can beneficially modify the habitat for the growth of subsequent plant communities.  相似文献   
54.
Phleum pratense and Poa pratensis were significantly lower (P ≤ 0.001) on plots with more than 250 ppm copper. Above-ground biomass of Phleum pratense was also significantly lower on plots with copper levels above 250 ppm. Decreased mean grass density was found on plots with pH < 6.4, but the only statistically significant difference was for Juncus balticus, which had increased density on plots with pH < 6.4. In contrast to the clear impacts of trace metals and pH on vegetation, other site characteristics did not alter measured vegetation characteristics.  相似文献   
55.
Excessive inter-contamination with heavy metals hampers the application of biological treatment products derived from mixed or mechanically-sorted municipal solid waste (MSW). In this study, we investigated fine particles of < 2 mm, which are small fractions in MSW but constitute a significant component of the total heavy metal content, using bulk detection techniques. A total of 17 individual fine particles were evaluated using synchrotron radiation-based micro-X-ray fluorescence and micro-X-ray diffraction. We also discussed the association, speciation and source apportionment of heavy metals. Metals were found to exist in a diffuse distribution with heterogeneous intensities and intense hot-spots of < 10 μm within the fine particles. Zn-Cu, Pb-Fe and Fe-Mn-Cr had significant correlations in terms of spatial distribution. The overlapped enrichment, spatial association, and the mineral phases of metals revealed the potential sources of fine particles from size-reduced waste fractions (such as scraps of organic wastes or ceramics) or from the importation of other particles. The diverse sources of heavy metal pollutants within the fine particles suggested that separate collection and treatment of the biodegradable waste fraction (such as food waste) is a preferable means of facilitating the beneficial utilization of the stabilized products.  相似文献   
56.
In partnership with the US Department of Energy’s Office of Industrial Technology, Whyco Technologies, Inc., has developed an innovative perforated plating barrel used in the plating of metal parts. This new technology employs a thin-walled construction, differing from the traditional thick-wall design required to provide adequate structural integrity. The thicker walls lowered the efficiency of transferring plating solution into and out of the barrel and diminished the electrical current pushed through the holes and onto the parts being plated. By machining pockets out of the traditional thick-walled perforated structure, Whyco produced a ‘honeycomb’ of staggered cells, allowing for the greatest number of holes per open area while maintaining structural integrity. Hydrodynamic pumping occurs during barrel rotation to create greater solution transfer than in traditional barrels. The Whyco barrel has higher current density plating, which leads to faster plating cycles, reduced bath concentration, and better plating of difficult chemistries such as in alloys. This new technology has helped the company reduce energy use by 16%, eliminate more than 480 tons/year of solid waste, and reduce wastewater by more than 17 000 gallons/day. The resulting cost savings total more than $500 000 annually. The company has manufactured and sold more than 275 of these barrels to other electroplating companies that are reporting up to a 40% increase in plating productivity and similar energy and environmental impacts.  相似文献   
57.
Land-use intensification has led to a landscape mosaic that juxtaposes human-managed and natural areas. In such human-dominated and heterogeneous landscapes, spillover across habitat types, especially in systems that differ in resource availability, may be an important ecological process structuring communities. While there is much evidence for spillover from natural habitats to managed areas, little attention has been given to flow in the opposite direction. This paper synthesizes studies published to date from five functionally important trophic groups, herbivores, pathogens, pollinators, predators, and seed dispersers, and discusses evidence for spillover from managed to natural systems in all five groups. For each of the five focal groups, studies in the natural to managed direction are common, often with multiple review articles on each subject which document dozens of examples. In contrast, the number of studies which examine movement in the managed to natural direction is generally less than five studies per trophic group. These findings suggest that spillover in the managed to natural direction has been largely underestimated. As habitat modification continues, resulting in increasingly fragmented landscapes, the likelihood and size of any spillover effect will only increase.  相似文献   
58.
Based on the measurement of major and trace elements in suspended sediments in the low reaches of the Changjiang River during throughout a whole hydrologic year, the origins, seasonal variations, and fluxes of multielements and the human impacts on multielements transport processes have been analyzed along with the influence of weathering in the Changjiang River basin. The results show that most element contents were high in both autumn and winter and low in summer, which was largely caused by the dilution of discharge. Weathering detritus in the Changjiang River basin is the main source of most elements in suspended sediments. However, riverine pollution could bring more loadings of Cd, Pb, As and Zn into river water than it did a few decades ago. The annual average fluxes of Cd, Pb and Zn, which are major contamination elements, to the sea were 179 ± 21 tons/year, 7810 ± 675 tons/year, and 12,000 ± 1320 tons/year,respectively, in which approximately 8.7%, 11.9% and 2.7% of their loadings, respectively,were contributed by pollution inputs. Element exports mainly occurred in the summer(44.4%–57.4%) in the lower part of the Changjiang River. A general relationship between sediment retention and element content suggests a positive feedback mechanism for the decreased number of particles, in which element riverine loadings are reduced due to the enhanced trapping effect by the Three Gorges Dam(TGD). Compared to those in 1980,current element shares of the Changjiang River compared to the global budget have declined due to the construction of the TGD.  相似文献   
59.
燕炳成  崔戈  孙胜浩  王沛芳  王超  吴程  陈娟 《环境科学》2023,44(7):3864-3871
浮游真核微生物通常由少数丰富类和大量稀有类组成,二者在维持水生生态系统健康稳定方面具有重要作用.目前对大型筑坝河流中这两类真核微生物的生物地理分布模式所知甚少.以我国西南梯级水电开发河流金沙江为研究区域,对比分析丰富类和稀有类浮游真核微生物在不同河段的分布特征,解析影响两类微生物空间分布的主导因素.结果表明,相比上游自然河段,金沙江浮游真核微生物的α多样性在梯级大坝河段显著升高,稀有类的α多样性增长比高于丰富类.浮游真核丰富类和稀有类微生物的群落组成在不同河段间存在显著差异,其中Vermamoeba属等优势属的相对丰度在两河段间同样存在明显差异.影响丰富类和稀有类浮游真核微生物群落组成的关键地化因子有海拔和pH等,两类微生物群落相似性与地理距离和环境异质性均符合距离衰减关系,其群落构建均受扩散限制和环境筛选共同影响;方差分解分析和偏Mantel检验结果显示扩散限制是影响丰富类和稀有类分布的主要驱动因素.研究结果为我国西南缺资料区水电开发河流中微生物的地理分布模式和生态响应提供数据支持.  相似文献   
60.
The ability of surface flow and subsurface flow simulated wetlands to remove heavy metals from a NaCI-enriched wastewater was examined, employing bulrush (Scirpus validus) and cattail (Typha angustifolia) plants, and two organically amended substrates (mixtures of mushroom compost and leaf litter,with topsoil) with a limestone liner. A simulated wastewater solution containing Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn as chloride salts was added to the wetlands at a rate of 0.3 l h–1. During 12 weeks of surface flow, Fe was retained most efficiently (74%), and Mn the least (24%). Most metal retention occurred in residual forms, primarily in the upper 5 cm of the substrate. A subsequent 10 week subsurface flow treatment exhibited greater removal efficiencies for all metals, probably due to increased contact with the highly buffered lower substrate. During both treatments, bioaccumulation occurred in plants, but accounted for a very small portion of the total metal removal. Plant species did not significantly influence wetland performance with respect to metal retention. Substrate type did not affect removal efficiency for most metals, but did influence the forms of the metals retained in the wetland.To whom correspondence should be addressed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号