首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
  国内免费   20篇
安全科学   4篇
废物处理   1篇
环保管理   1篇
综合类   21篇
基础理论   3篇
污染及防治   20篇
评价与监测   1篇
社会与环境   1篇
  2022年   2篇
  2021年   6篇
  2020年   1篇
  2019年   4篇
  2018年   5篇
  2017年   1篇
  2016年   3篇
  2015年   4篇
  2014年   1篇
  2013年   3篇
  2012年   4篇
  2011年   5篇
  2010年   2篇
  2009年   7篇
  2007年   1篇
  2006年   1篇
  2003年   2篇
排序方式: 共有52条查询结果,搜索用时 312 毫秒
11.
Among the factors influencing dust explosion, the particle size distribution (PSD) is both one of the most important and complex to consider. For instance, it is commonly accepted that the explosion sensitivity increases when the particle size decreases. Such an assertion may be questionable for nano-objects which easily agglomerate. However, agglomerates can be broken during the dispersion process. Correlating the explosion parameters to the actual PSD of a dust cloud at the moment of the ignition becomes then essential. The effects of the moisture content and sieving were investigated on a nanocellulose powder and the impact of a mechanical agglomeration was evaluated using a silicon coated by carbon powder. Each sample was characterized before and after dispersion using in situ laser particle size measurement and a fast mobility particle sizer, and explosion and minimum ignition energy tests were conducted respectively in a 20 L sphere and in a modified Hartmann tube. It was observed that drying and/or sieving the nanocellulose mainly led to variations in terms of ignition sensitivity but only slightly modified the explosion severity. In contrast, the mechanical agglomeration of the silicon coated by carbon led to a great decrease in terms of ignition sensitivity, with a minimum ignition energy varying from 5 mJ for the raw powder to more than 1J for the agglomerated samples. The maximum rate of pressure rise also decreased due to modifications in the reaction kinetics, inducing a transition from St2 class to St1 class when agglomerating the dust.  相似文献   
12.
Arsenic and sulfur mineralization is a natural phenomenon occurring in hydrothermal systems where parameters like temperature and organic matter(OM) can influence the mobilization of the toxic metalloid in marine environments. In the present study we analyze the influence of temperature and OM(particularly sulfur-containing additives) on As and S precipitation based on the recent discovery of As-rich nanoparticles in the hydrothermal system near the coast of the Greek island Milos. To this end, ...  相似文献   
13.
More and more attention has been paid to the aggregation behavior of nanoparticles, but little research has been done on the effect of particle size. Therefore, this study systematically evaluated the aggregation behavior of nano-silica particles with diameter 130–480 nm at different initial particle concentration, pH, ionic strength, and ionic valence of electrolytes. The modified Smoluchowski theory failed to describe the aggregation kinetics for nano-silica particles with diameters less than 190 nm. Besides, ionic strength, cation species and pH all affected fast aggregation rate coefficients of 130 nm nanoparticles. Through incorporating structural hydration force into the modified Smoluchowski theory, it is found that the reason for all the anomalous aggregation behavior was the different structural hydration layer thickness of nanoparticles with various sizes. The thickness decreased with increasing of particle size, and remained basically unchanged for particles larger than 190 nm. Only when the distance at primary minimum was twice the thickness of structural hydration layer, the structural hydration force dominated, leading to the higher stability of nanoparticles. This study clearly clarified the unique aggregation mechanism of nanoparticles with smaller size, which provided reference for predicting transport and fate of nanoparticles and could help facilitate the evaluation of their environment risks.  相似文献   
14.
Limited information is available on the environmental behavior and associated potential risk of manufactured oxide nanoparticles (NPs). In this research, toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 were examined to the nematode Caenorhabditis elegans with Escherichia coli as a food source. Parallel experiments with dissolved metal ions from NPs were also conducted. The 24-h median lethal concentration (LC50) and sublethal endpoints were assessed. Both NPs and their bulk counterparts were toxic, inhibiting growth and especially the reproductive capability of the nematode. The 24-h LC50 for ZnO NPs (2.3 mg L−1) and bulk ZnO was not significantly different, but significantly different between Al2O3 NPs (82 mg L−1) and bulk Al2O3 (153 mg L−1), and between TiO2 NPs (80 mg L−1) and bulk TiO2 (136 mg L−1). Oxide solubility influenced the toxicity of ZnO and Al2O3 NPs, but nanoparticle-dependent toxicity was indeed observed for the investigated NPs.  相似文献   
15.
Various compositions of cobalt and sulfur co-doped titania nano-photocatalyst are synthesized via sol–gel method. A number of techniques including X-ray diffraction(XRD), ultraviolet–visible(UV–Vis), Rutherford backscattering spectrometry(RBS), thermal gravimetric analysis(TGA)Raman, N2 sorption, electron microscopy are used to examine composition, crystalline phase, morphology, distribution of dopants, surface area and optical properties o synthesized materials. The synthesized materials consisted of quasispherical nanoparticles of anatase phase exhibiting a high surface area and homogeneous distribution o dopants. Cobalt and sulfur co-doped titania demonstrated remarkable structural and optical properties leading to an efficient photocatalytic activity for degradation of dyes and phenol under visible light irradiations. Moreover, the effect of dye concentration catalyst dose and p H on photodegradation behavior of environmental pollutants and recyclability of the catalyst is also examined to optimize the activity of nano-photocatalys and gain a better understanding of the process.  相似文献   
16.
Nanotechnology is a major innovative scientific and economic growth area, which may present a variety of hazards for environmental and human health. The surface properties and very small size of nanoparticles and nanotubes provide surfaces that may bind and transport toxic chemical pollutants, as well as possibly being toxic in their own right by generating reactive radicals. There is a wealth of evidence for the harmful effects of nanoscale combustion-derived particulates (ultrafines), which when inhaled can cause a number of pulmonary pathologies in mammals and humans. However, release of manufactured nanoparticles into the aquatic environment is largely an unknown. This review addresses the possible hazards associated with nanomaterials and harmful effects that may result from exposure of aquatic animals to nanoparticles. Possible nanoparticle association with naturally occurring colloids and particles is considered together with how this could affect their bioavailability and uptake into cells and organisms. Uptake by endocytotic routes are identified as probable major mechanisms of entry into cells; potentially leading to various types of toxic cell injury. The higher level consequences for damage to animal health, ecological risk and possible food chain risks for humans are also considered based on known behaviours and toxicities for inhaled and ingested nanoparticles in the terrestrial environment. It is concluded that a precautionary approach is required with individual evaluation of new nanomaterials for risk to the health of the environment. Although current toxicity testing protocols should be generally applicable to identify harmful effects associated with nanoparticles, research into new methods is required to address the special properties of nanomaterials.  相似文献   
17.
The fate and transport of antibiotics in natural water systems is controlled in part by interactions with nanometer (10−9 m) metal oxide particles. Experiments were performed by mixing solutions of ampicillin (AMP), a common, penicillin-class human and veterinary antibiotic, with 25 nm-TiO2 (anatase) nanoparticles at different pH conditions. Both sorption and degradation of AMP were observed in the AMP-nanoparticle solutions. For AMP concentrations from ∼3 μM to 2.9 mM the overall AMP removal from solution can be described by linear isotherms with removal coefficients (Kr) of 3028 (±267) L kg−1 at pH 2, 11,533 (±823) L kg−1 at pH 4, 12,712 (±672) L kg−1 at pH 6, and 1941 (±342) L kg−1 at pH 8. Mass spectral analysis of AMP solutions after removal of the solid nanoparticles yielded ions that indicate the presence of peniclloic acid, penilloic acid and related de-ammoniated by-products as possible compounds resulting from the degradation of AMP at the TiO2 surface.  相似文献   
18.
Understanding the behavior of engineered nanoparticles in the environment and within organisms is perhaps the biggest obstacle to the safe development of nanotechnologies. Reliable tracing is a particular issue for nanoparticles such as ZnO, because Zn is an essential element and a common pollutant thus present at elevated background concentrations. We synthesized isotopically enriched (89.6%) with a rare isotope of Zn (67Zn) ZnO nanoparticles and measured the uptake of 67Zn by L. stagnalis exposed to diatoms amended with the particles. Stable isotope technique is sufficiently sensitive to determine the uptake of Zn at an exposure equivalent to lower concentration range (<15 μg g−1). Without a tracer, detection of newly accumulated Zn is significant at Zn exposure concentration only above 5000 μg g−1 which represents some of the most contaminated Zn conditions. Only by using a tracer we can study Zn uptake at a range of environmentally realistic exposure conditions.  相似文献   
19.
The paper addresses the wear particles released from commercially available “low-metallic” automotive brake pads subjected to brake dynamometer tests. Particle size distribution was measured in situ and the generated particles were collected. The collected fractions and the original bulk material were analyzed using several chemical and microscopic techniques. The experiments demonstrated that airborne wear particles with sizes between 10 nm and 20 μm were released into the air. The numbers of nanoparticles (<100 nm) were by three orders of magnitude larger when compared to the microparticles. A significant release of nanoparticles was measured when the average temperature of the rotor reached 300 °C, the combustion initiation temperature of organics present in brakes. In contrast to particle size distribution data, the microscopic analysis revealed the presence of nanoparticles, mostly in the form of agglomerates, in all captured fractions. The majority of elements present in the bulk material were also detected in the ultra-fine fraction of the wear particles.  相似文献   
20.
Understanding the transformation of nanoparticles emitted from vehicles is essential for developing appropriate methods for treating fine scale particle dynamics in dispersion models. This article provides an overview of significant research work relevant to modelling the dispersion of pollutants, especially nanoparticles, in the wake of vehicles. Literature on vehicle wakes and nanoparticle dispersion is reviewed, taking into account field measurements, wind tunnel experiments and mathematical approaches.Field measurements and modelling studies highlighted the very short time scales associated with nanoparticle transformations in the first stages after the emission. These transformations strongly interact with the flow and turbulence fields immediately behind the vehicle, hence the need of characterising in detail the mixing processes in the vehicle wake. Very few studies have analysed this interaction and more research is needed to build a basis for model development. A possible approach is proposed and areas of further investigation identified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号