首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   4篇
  国内免费   31篇
安全科学   1篇
废物处理   2篇
环保管理   18篇
综合类   65篇
基础理论   26篇
污染及防治   53篇
评价与监测   16篇
社会与环境   1篇
  2023年   5篇
  2022年   7篇
  2021年   7篇
  2020年   7篇
  2019年   3篇
  2018年   8篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   6篇
  2012年   9篇
  2011年   10篇
  2010年   9篇
  2009年   10篇
  2008年   19篇
  2007年   14篇
  2006年   13篇
  2005年   8篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1996年   2篇
  1994年   6篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有182条查询结果,搜索用时 15 毫秒
121.
We conducted statistical analyses of a 10-year record of stream nutrient and sediment concentrations for 17 streams in the greater Seattle region to determine the impact of urban non-point-source pollutants on stream water quality. These catchments are dominated by either urban (22–87%) or forest (6–73%) land cover, with no major nutrient point sources. Stream water phosphorus concentrations were moderately strongly (r2=0.58) correlated with catchment land-cover type, whereas nitrogen concentrations were weakly (r2=0.19) and nonsignificantly (at < 0.05) correlated with land cover. The most urban streams had, on average, 95% higher total phosphorus (TP) and 122% higher soluble reactive phosphorus (SRP) and 71% higher turbidity than the most forested streams. Nitrate (NO3), ammonium (NH4), and total suspended solids (TSS) concentrations did not vary significantly with land cover. These results suggest that urbanization markedly increased stream phosphorus concentrations and modestly increased nitrogen concentrations. However, nutrient concentrations in Seattle region urban streams are significantly less than those previously reported for agricultural area streams.  相似文献   
122.
Orlando US  Baes AU  Nishijima W  Okada M 《Chemosphere》2002,48(10):1041-1046
Anion exchangers were prepared from different agricultural residues (AR) after reaction with epichlorohydrin and dimethylamine in the presence of pyridine and N,N-dimethylformamide (EDM method). Agricultural residues anion exchangers (AR-AE) produced by the EDM method were inexpensive and showed almost the same NO3 removal capacities as Amberlite IRA-900. AR-AE produced from AR with higher hemicelluloses, lignin, ash and extractive contents resulted in the lower yields. Sugarcane bagasse with the highest -cellulose contents of 51.2% had the highest yield (225%) and lowest preparation cost. The highest maximum adsorption capacity (Qmax) for nitrate was obtained from rice hull (1.21 mmol g−1) and pine bark natural exchangers (1.06 mmol g−1). No correlation was found between Qmax and -cellulose content in the original AR. AR-AE produced from different AR demonstrated comparable Qmax due to the removal of non-active compounds such as extractives, lignin and hemicelluloses from AR during the preparation process. Similar preparation from pure cellulose and pure alkaline lignin demonstrated that the EDM method could not produce anion exchangers from pure lignin due to its solubilization after the reaction with epichlorohydrin.  相似文献   
123.
Nitrate pollution has caused serious environmental concerns, but its control is often complicated by its diffuse nature. In most cases, nitrate control has been linked to either nitrogen input or leaching. By incorporating the relationship among land use, fertilizer application, and nitrogen leaching into a linear programming model, this analysis investigates the comparative effectiveness between input and leaching control. The empirical results from a groundwater catchment in eastern England suggest that leaching control can be more cost-effective in nitrate reduction than fertilizer input control. The implications for control of nitrate leaching through incentives systems are discussed.  相似文献   
124.
Shallow groundwater quality on dairy farms with irrigated forage crops   总被引:5,自引:0,他引:5  
California's dairies are the largest confined animal industry in the state. A major portion of these dairies, which have an average herd size of nearly 1000 animal units, are located in low-relief valleys and basins. Large amounts of liquid manure are generated and stored in these dairies. In the semi-arid climate, liquid manure is frequently applied via flood or furrow irrigation to forage crops that are grown almost year-round. Little is known about the impact of manure management practices on water quality of the extensive alluvial aquifers underlying these basins. The objective of this work is to assess nitrate and salt leaching to shallow groundwater in a relatively vulnerable hydrogeologic region and to quantify the impact from individual sources on dairies. The complex array of potential point and nonpoint sources was divided into three major source areas representing farm management units: (1) manure water lagoons (ponds); (2) feedlot or exercise yard, dry manure, and feed storage areas (corrals); and (3) manure irrigated forage fields (fields). An extensive shallow groundwater-monitoring network (44 wells) was installed in five representative dairy operations in the northeastern San Joaquin Valley, CA. Water quality (electrical conductivity, nitrate-nitrogen, total Kjehldahl nitrogen) was observed over a 4-year period. Nitrate-N, reduced nitrogen and electrical conductivity (EC, salinity) were subject to large spatial and temporal variability. The range of observed nitrate-N and salinity levels was similar on all five dairies. Average shallow groundwater nitrate-N concentrations within the dairies were 64 mg/l compared to 24 mg/l in shallow wells immediately upgradient of these dairies. Average EC levels were 1.9 mS/cm within the dairies and 0.8 mS/cm immediately upgradient. Within the dairies, nitrate-N levels did not significantly vary across dairy management units. However, EC levels were significantly higher in corral and pond areas (2.3 mS/cm) than in field areas (1.6 mS/cm) indicating leaching from those management units. Pond leaching was further inferred from the presence of reduced nitrogen in three of four wells located immediately downgradient of pond berms. The estimated minimum average annual groundwater nitrate-N and salt loading from manure-treated forage fields were 280 and 4300 kg/ha, respectively. Leaching rates for ponds are estimated to be on the order of 0.8 m/year, at least locally. Since manure-treated fields represent by far the largest land area of the dairy, proper nutrient management will be a key to protecting groundwater quality in dairy regions overlying alluvial aquifers.  相似文献   
125.
许宇翔 《环境科技》2005,18(Z1):15-16
通过测量南方酸性土壤中pH值、有机质、硝态氮及汞的含量变化,分析物质间变化关系,了解南方酸性土壤中重金属汞的污染状况,并针对南方酸性土壤的特性提出了污染防治措施及建议.  相似文献   
126.
Bioaugmentation of denitrifying bacteria can serve as a promising technique to improve nutrient removal during wastewater treatment. While denitrification inhibition by bacterial quorum sensing (QS) in Pseudomonas aeruginosa has been indicated, the application of bacterial QS disruption to improve nitrate removal from wastewater has not been investigated. In this study, the effect of bioaugmentation of P. aeruginosa SD-1 on nitrate removal in sequencing batch reactors that treat nitrate rich wastewater was assessed. Additionally, the potential of a quorum sensing inhibitor (QSI) to improve denitrification following bacterial bioaugmentation was evaluated. Curcumin, a natural plant extract, was used as a QSI. The chemical oxygen demand (COD) and initial nitrate concentration of the influent were 700±20 mg/L and 200±10 mg/L respectively, and their respective concentrations in the effluent were 56.9±3.2 mg/L and 9.0±3.2 mg/L. Thus, the results revealed that bioaugmentation of P. aeruginosa SD-1 resulted in an increased nitrate removal to 82%±1%. Further, nitrate was almost completely removed following the addition of the QSI, and activities of nitrate reductase and nitrite reductase increased by 88%±2% and 74%±2% respectively. The nitrogen mass balance indicated that aerobic denitrification was employed as the main pathway for nitrogen removal in the reactors. The results imply that bioaugmentation and modulation of QS in denitrifying bacteria, through the use of a QSI, can enhance nitrate removal during wastewater treatment.  相似文献   
127.
Chemical speciation of fine particles or PM_(2.5) collected on filters is still a costly and timeconsuming task. In this study, filter-based PM_(2.5) samples were collected during November–December 2013 at four sites in Guangzhou, and the major components were fast screened(~7 min per filter sample) by Attenuated Total Reflectance(ATR)-Fourier Transform Infrared Spectroscopic(FTIR) in comparison with that measured by Organic carbon/Element carbon(OC/EC) analyzer and Ion Chromatography(IC). The concentrations of nitrate, ammonium, sulfate,primary organic carbon(POC) and secondary organic carbon(SOC) measured by OC/EC and IC analyzers were better correlated with their infrared absorption peak heights at 1320 cm~(-1) for nitrate, 1435, 3045 and 3215 cm~(-1) for ammonium, 615 cm~(-1) for sulfate, 690, 760 and 890 cm~(-1) for POC and 1640 and 1660 cm~(-1) for SOC respectively, during polluted days(PM_(2.5) 75 μg/m~3) than during clean days(PM_(2.5)≤ 75 μg/m~3). With the evolution of a haze episode during our field campaign, the concentrations of the major PM_(2.5) components displayed consistent variations with their infrared absorption peak heights, suggesting ATR-FTIR could be a fast and useful technique to characterize filter-based PM_(2.5) compositions particularly during pollution events although cautions should be taken when PM_(2.5) levels are low. Notably, elevated PM_(2.5) mass concentrations occurred with enhanced ratios of [NO_(-3)]/[SO_4~(2-)] and [NH~(+4)]/[SO_4~(2-)], implying that nitrogenous components play vital roles in the PM_(2.5) pollution events in the study region.  相似文献   
128.
The impact of long-term pig manure application to a red soil in subtropical China on nitrate leaching was investigated in a field lysimeter experiment from 2002 to 2009. Simultaneously, nitrate leaching was simulated by water and nitrogen management model (WNMM) basing on these observed data to determine the environmental threshold of manure application. Nitrate concentrations in the drainage and nitrate leaching under low manure application (150 kg N ha−1 y−1) did not increase during the study period. Interestingly, the nitrate concentrations in drainage water following high manure application (600 kg N ha−1 y−1) increased exponentially in the first four years and then remained at 13 mg l−1 for the next four years. Addition of lime based on high manure application had no significant effect on nitrate concentrations or total nitrate leaching. WNMM simulated the variation in corn yields and nitrate leaching well. The environmentally safe threshold for long-term application of pig manure was 360 kg N ha−1.  相似文献   
129.
Following the recognition of the detrimental effects of nitrogen (N) losses from agriculture in the European Union (EU) on human health and environment, series of environmental policy measures have been implemented from the early 1990s onwards. However, these measures have only been partially successful. Clearly, there is lack of integration of available measures and there is lack of enforcement and hierarchy; which measures should be implemented first? We identified and assessed three ‘most promising measures’ to decrease N losses from agriculture, i.e., (i) balanced fertilization, (ii) low-protein animal feeding, and (iii) ammonia (NH3) emissions abatement measures. Environmental-economic assessments were made using scenario analyses and the modeling tools MITERRA-EUROPE and CAPRI.In the baseline scenario (business as usual), N use efficiency (NUE) in crop production increases from 44% in 2000 to 48% in 2020, while total N losses decrease by 10%. Implementation of promising measures increases NUE further to 51–55%, and decreases NH3 emissions (by up to 23%), nitrous oxide (N2O) emissions (by up to 10%) and N leaching losses (by up to 35%). Differences in responsiveness to promising measures varied between and within Member States. Strict implementation of balanced fertilization in nitrate vulnerable zones, as defined in the Nitrates Directive, decreases total farmers’ income in EU-27 by 1.7 billion euros per year. Implementation of all three measures decreases farmers income by 10.8 and total welfare by 17 billion euros per year, without valuing the environmental benefits.The study presented here is one of the first EU-wide integrated assessments of the effects of policy measures on all major N losses from agriculture and their economic costs. Our results show that the most promising measures are effective in enhancing NUE and decreasing NH3 and N2O emissions to the atmosphere and N leaching to groundwater and surface waters, but that income effects are significant. The order of implementation of the measures is important; NH3 emissions abatement measures must be implemented together with balanced N fertilization.  相似文献   
130.
随这鄂尔多斯经济的迅猛发展,城市规模的不断壮大。鄂尔多斯市制定了引用黄河水的战略措施。使黄河水成为鄂尔多斯城市居民的日常生活水源,所以黄河鄂尔多斯段的水质问题成为当地居民的热议话题。而其中F-、Cl-、NO3 -、SO4 2- 几种离子是作为水源地的必测项目。其水体的基本特点是泥沙含量高,浑浊,有机物含量丰富,因此Cl-、SO4 2-含量比较高,F-、NO3-含量比较小。笔者通过对实际样品有效的预处理,并选择恰当的稀释倍数,用ICS-1500离子色谱一次进样同时测定了F-、Cl-、NO3-、SO4 2-取得了满意的结果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号