首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   4篇
  国内免费   31篇
安全科学   1篇
废物处理   2篇
环保管理   18篇
综合类   65篇
基础理论   26篇
污染及防治   53篇
评价与监测   16篇
社会与环境   1篇
  2023年   5篇
  2022年   7篇
  2021年   7篇
  2020年   7篇
  2019年   3篇
  2018年   8篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   2篇
  2013年   6篇
  2012年   9篇
  2011年   10篇
  2010年   9篇
  2009年   10篇
  2008年   19篇
  2007年   14篇
  2006年   13篇
  2005年   8篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1996年   2篇
  1994年   6篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有182条查询结果,搜索用时 15 毫秒
161.
Investigation of gas production and entrapment in granular iron medium   总被引:1,自引:0,他引:1  
A method for measuring gas entrapment in granular iron (Fe0) was developed and used to estimate the impact of gas production on porosity loss during the treatment of a high NO3- groundwater (up to approximately 10 mM). Over the 400-d study period the trapped gas in laboratory columns was small, with a maximum measured at 1.3% pore volume. Low levels of dissolved H2(g) were measured (up to 0.07+/-0.02 M). Free moving gas bubbles were not observed. Thus, porosity loss, which was determined by tracer tests to be 25-30%, is not accounted for by residual gas trapped in the iron. The removal of aqueous species (i.e., NO3-, Ca, and carbonate alkalinity) indicates that mineral precipitation contributed more significantly to porosity loss than did the trapped gases. Using the stoichiometric reactions between Fe0 and NO3-, an average corrosion rate of 1.7 mmol kg-1 d-1 was derived for the test granular iron. This rate is 10 times greater than Fe0 oxidation by H2O alone, based on H2 gas production. NO3- ion rather than H2O was the major oxidant in the groundwater in the absence of molecular O2. The N-mass balance [e.g., N2g and NH4+ and NO3-] suggests that abiotic reduction of NO3- dominated at the start of Fe0 treatment, whereas N2 production became more important once the microbial activity began. These laboratory results closely predict N2 gas production in a separated large column experiment that was operated for approximately 2 yr in the field, where a maximum of approximately 600 ml d-1 gas volumes was detected, of which 99.5% (v/v) was N2. We conclude that NO3- suppressed the production of H2(g) by competing with water for Fe0 oxidation, especially at the beginning of water treatment when Fe0 is highly reactive. Depends on the groundwater composition, gas venting may be necessary in maintaining PRB performance in the field.  相似文献   
162.
氮同位素方法在地下水氮污染源识别中的应用   总被引:8,自引:0,他引:8  
地下水硝酸盐来源复杂多样.介绍了用15N/14N的方法(N同位素方法)分析辨明污染物来源.氮污染源不同,氮同位素值(δ15N值)也就不同.例如:雨水的δ15N值偏低,为-1.08%~0.21%;生活排水的δ15N值偏高,为1.0%~1.7%.污染源不同,受污染的地下水的δ15N值也不同,据此能有效地判断地下水硝酸盐的来源.  相似文献   
163.
Denitrification walls are a practical approach for decreasing non-point source pollution of surface waters. They are constructed by digging a trench perpendicular to groundwater flow and mixing the aquifer material with organic matter, such as sawdust, which acts as a carbon source to stimulate denitrification. For efficient functioning, walls need to be permeable to groundwater flow. We examined the functioning of a denitrification wall constructed in an aquifer consisting of coarse sands. Wells were monitored for changes in nitrate concentration as groundwater passed through the wall and soil samples were taken to measure microbial parameters inside the wall. Nitrate concentrations upstream of the wall ranged from 21 to 39 g N m(-3), in the wall from 0 to 2 g N m(-3) and downstream from 19 to 44 g N m(-3). An initial groundwater flow investigation using a salt tracer dilution technique showed that the flow through the wall was less than 4% of the flow occurring in the aquifer. Natural gradient tracer tests using bromide and Rhodamine-WT confirmed groundwater bypass under the wall. Hydraulic conductivity of 0.48 m day(-1) was measured inside the wall, whereas the surrounding aquifer had a hydraulic conductivity of 65.4 m day(-1). This indicated that during construction of the wall, hydraulic conductivity of the aquifer had been greatly reduced, so that most of the groundwater flowed under rather than through the wall. Denitrification rates measured in the center of the wall ranged from 0.020 to 0.13 g N m(-3) day(-1), which did not account for the rates of nitrate removal (0.16-0.29 g N m(-3) day(-1)) calculated from monitoring of groundwater nitrate concentrations. This suggested that the rate of denitrification was greater at the upstream face of the wall than in its center where it was limited by low nitrate concentrations. While denitrification walls can be an inexpensive tool for removing nitrate from groundwater, they may not be suitable in aquifers with coarse textured subsoils where simple inexpensive construction techniques result in major decreases in hydraulic conductivity.  相似文献   
164.
Fireworks burning releases massive fine particles and gaseous pollutants, significantly deteriorating air quality during Chinese Lunar New Year(LNY) period. To investigate the impact of the fireworks burning on the atmospheric aerosol chemistry, 1-hr time resolution of PM_(2.5) samples in Xi'an during the winter of 2016 including the LNY were collected and detected for inorganic ions, acidity and liquid water content(LWC) of the fine aerosols. PM_(2.5) during the LNY was 167 ± 87 μg/m~3, two times higher than the China National Ambient Air Quality Standard(75 μg/m~3). K~+(28 wt.% of the total ion mass) was the most abundant ion in the LNY period, followed by SO_4~(2-)(25 wt.%) and Cl-(18 wt.%). In contrast, NO_3~-(34 wt.%) was the most abundant species in the haze periods(hourly PM32-2.5 75 μg/m), followed by SO_4(29.2 wt.%) and NH_4~+(16.3 wt.%), while SO_4~(2-)(35 wt.%) was the most abundant species in the clean periods(hourly PM_(2.5) 75 μg/m~3), followed by NO_3~-(23.1 wt.%) and NH_4~+(11 wt.%). Being different from the acidic nature in the non-LNY periods, aerosol in the LNY period presented an alkaline nature with a pH value of 7.8 ± 1.3. LWC during the LNY period showed a robust linear correlation with K_2SO_4 and KCl, suggesting that aerosol hygroscopicity was dominated by inorganic salts derived from fireworks burning. Analysis of correlations between the ratios of NO--3/SO_4~(2-) and NH_4~+/SO_4~(2-) indicated that heterogeneous reaction of HNO_3 with NH_3 was an important formation pathway of particulate nitrate and ammonium during the LNY period.  相似文献   
165.
离子色谱法测定蔬菜中硝酸盐含量方法初探   总被引:1,自引:0,他引:1  
蔬菜作为人们日常生活中必需的鲜活农产品,其食用的安全性日益引起重视。食品中的亚硝胺是大家公认的一种化学致癌物,其前体包括硝酸盐和亚硝酸盐。由于化肥的广泛使用,尤其是化学氮肥,使蔬菜中硝酸盐含量过大。分析蔬菜中硝酸盐含量也可以间接了解农田土壤的环境质量。文章阐述了离子色谱法测定蔬菜(如小白菜、葱、韭菜、莴笋叶及苋菜等)中硝酸盐含量的前处理方法与测定步骤。它可以作为测定蔬菜、水果等食品中硝酸盐含量的一种精密度高、简单快速的方法。  相似文献   
166.
A mathematical model of urinary nitrogen and water flow in soil has been developed that incorporated stochastic rainfall and stochastic temperature events. This model was used to characterise the variability in urine patch nitrogen leaching at Taupo, New Zealand. This stochastic model was also used to more accurately determine the effect of urinary patch overlap on cow urinary nitrogen flow and leaching in soil. Nitrogen leaching from single urine deposits on pasture in the winter ranged from 0 to 75% of applied nitrogen as a result of stochastic rainfall events. Rainfall effects explained 98% of the variance in nitrogen leaching due to stochastic rainfall and temperature effects combined. The model predicted that on average 38, 61, and 71% of the nitrogen in single, double and triple urine patches is leached in the winter. Nitrogen leaching rates were significantly greater in the winter than the summer months. The distribution in the amount of nitrogen leached from single urine patches was close to normal in the winter but approximately exponentially distributed in the summer. The variability in total nitrogen leached from a field also decreased as the stocking rate increased. A quantitative modelling framework is crucial for understanding nitrogen transport in pastoral systems and for effectively setting and enforcing restrictions imposed by regulatory bodies on nitrogen losses from pastoral farming and this study represents a component of this framework.  相似文献   
167.
亚硝酸盐等因素对反硝化除磷的影响及对策   总被引:1,自引:0,他引:1  
介绍了反硝化除磷工艺的原理以及运行过程中的影响因素,重点讨论了不同浓度的NO2-的存在对反硝化除磷的影响.同时,探讨了如何控制众多影响反硝化除磷的因素,从而使该工艺得以正常稳定地运行.  相似文献   
168.
试验表明;组织未受损伤的新鲜蔬菜样品在20~30℃与4℃下可分别保存3天与7天其NO_3含量基本不变;捣碎的样品在4℃可保存4~6h;经100℃烘煮后,又在4℃处理可保存一夜;样品干燥后在干燥器中存放20天内含量不变,但受潮后极易变化。  相似文献   
169.
单扫描极谱法同时测定环境水样中微量硝酸根和亚硝酸根   总被引:5,自引:0,他引:5  
在浓硫酸介质中 ,8-羟基喹啉与硝酸根的硝化产物在 p H9.0左右的 NH3-NH4Cl的缓冲溶液中 ,于 -0 .6 3V处产生灵敏的导数波 ,波高与硝酸根浓度在 0 .0 1~ 2 .5μg· m l- 1 范围呈线性关系 ,检测限为 0 .0 0 4μg· ml- 1 。测定相对标准偏差小于 2 .7% ,样品加标回收率为 96 .0 %~ 10 4.2 % ,亚硝酸根经 H2 O2 氧化处理亦可进行测定。本法可用于地表水、雨水中微量硝酸根、亚硝酸根的同时测定  相似文献   
170.
紫色土地区水文特征对硝态氮流失的影响研究   总被引:18,自引:3,他引:18  
采用人工降雨模拟的方法,研究水文传输途径对紫色土中NO3--N流失的影响.研究结果表明,在所有雨强中均观察到壤中流的存在.在小雨强长历时的降雨中壤中流的径流量大于大雨强短历时降雨;随着雨强的增大,壤中流的径流系数下降.在紫色土地区,氮素的流失途径不仅包括地表径流而且包括壤中流,并且壤中流是NO3--N的主要水文传输途径.无论是否受到施肥措施的影响,壤中流中NO2--N浓度均高于地表径流.在对照小区,壤中流中NO3--N平均浓度是地表径流的7倍以上;施肥后壤中流NO3--N平均浓度为26.07mg·L-1,是地表径流的20倍以上.在对照小区,壤中流NO3--N的流失量占流失总量的30%以上;在施肥小区,壤中流NO3--N流失量占总流失量的90%以上.在紫色土地区,土壤特征和降雨特征决定了该地区壤中流形式的普遍存在,而NO3--N以壤中流流失的特点与当地施肥习惯的耦合效应增大了该地区的NO3--N流失风险.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号