首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   638篇
  免费   13篇
  国内免费   122篇
安全科学   29篇
废物处理   13篇
环保管理   78篇
综合类   312篇
基础理论   101篇
环境理论   1篇
污染及防治   166篇
评价与监测   60篇
社会与环境   13篇
  2024年   1篇
  2023年   13篇
  2022年   24篇
  2021年   13篇
  2020年   17篇
  2019年   21篇
  2018年   20篇
  2017年   13篇
  2016年   23篇
  2015年   41篇
  2014年   32篇
  2013年   32篇
  2012年   32篇
  2011年   60篇
  2010年   39篇
  2009年   58篇
  2008年   59篇
  2007年   50篇
  2006年   42篇
  2005年   19篇
  2004年   22篇
  2003年   20篇
  2002年   22篇
  2001年   12篇
  2000年   22篇
  1999年   9篇
  1998年   5篇
  1997年   7篇
  1996年   11篇
  1995年   6篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有773条查询结果,搜索用时 31 毫秒
51.
Pools of Zn, Cu, Cd and Co in leaf, stem and root tissues of Sarcocornia fruticosa, Sarcocornia perennis, Halimione portulacoides and Spartina maritima were analyzed on a bimonthly basis, in a Tagus estuary salt marsh. All the major concentrations were found in the root tissues, being the concentrations in the aboveground organs neglectable for sediment budget proposes, as seen by the low root-aboveground translocation. Metal annual accumulation, root turnovers and cycling coefficients were also assessed. S. maritima showed the higher root turnovers and cycling coefficients for most of the analyzed metals, making this a phytostabilizer specie. By contrast the low root turnover, cycling coefficient and low root necromass generation makes S. perennis the most suitable specie for phytoremediation processes. Although the high amounts of metal return to the sediments, due to root senescence, salt marshes can still be considered sinks of heavy metals, cycling heavy metals mostly between sediment and root.  相似文献   
52.
The relationship between different features of lichen communities in Quercus robur canopies and environmental variables, including concentrations of NO2 and NH3 was investigated. NO2 concentration was the most significant variable, it was positively correlated with the proportion of lichen cover comprising nitrophytes and negatively correlated with total lichen cover. None of the lichen community features were correlated with NH3 concentrations, which were relatively low across the site. Since nitrophytes and nitrophobes are likely to react in opposite directions to nitrogenous compounds, total lichen cover is not a suitable indicator for these pollutants. It is, therefore, suggested that the proportion of lichen cover comprising nitrophytes may be a suitable simple indicator of air quality, particularly in locations where the pollution climate is dominated by oxides of nitrogen.  相似文献   
53.
The Baltic Sea Action Plan (BSAP) requires tools to simulate effects and costs of various nutrient abatement strategies. Hierarchically connected databases and models of the entire catchment have been created to allow decision makers to view scenarios via the decision support system NEST. Increased intensity in agriculture in transient countries would result in increased nutrient loads to the Baltic Sea, particularly from Poland, the Baltic States, and Russia. Nutrient retentions are high, which means that the nutrient reduction goals of 135 000 tons N and 15 000 tons P, as formulated in the BSAP from 2007, correspond to a reduction in nutrient loadings to watersheds by 675 000 tons N and 158 000 tons P. A cost-minimization model was used to allocate nutrient reductions to measures and countries where the costs for reducing loads are low. The minimum annual cost to meet BSAP basin targets is estimated to 4.7 billion €.  相似文献   
54.
Grandin U 《Ambio》2011,40(8):857-866
The aim was to describe spatiotemporal patterns of colonization of spruce branches by algae and lichens and the relationship with decreasing deposition of N and S. Coverage was estimated annually over 10 years for four Swedish Integrated Monitoring catchments with varying deposition levels. Initial hypotheses were that algal coverage would be positively correlated with deposition and that lichen coverage would be negatively correlated with S and positively with N deposition. Data were analyzed using regression, ANOVA, and partial least square regression. The results showed a temporal decrease in the coverage of algae but an increase in colonization rates, while lichens showed less uniform patterns. Within catchments, algae and lichen coverages were positively correlated with mainly S deposition. Across catchments, coverage of algae increased, while the coverage of lichens decreased with increasing N and S deposition. Colonization rates of both algae and lichens showed weak correlations with both spatial and temporal trends in N and S deposition. Thus, while N and S deposition had an effect on the colonization and coverage of algae and lichens, other factors are also important.  相似文献   
55.
The integrated modelling system INITIATOR was applied to a landscape in the northern part of the Netherlands to assess current nitrogen fluxes to air and water and the impact of various agricultural measures on these fluxes, using spatially explicit input data on animal numbers, land use, agricultural management, meteorology and soil. Average model results on NH3 deposition and N concentrations in surface water appear to be comparable to observations, but the deviation can be large at local scale, despite the use of high resolution data. Evaluated measures include: air scrubbers reducing NH3 emissions from poultry and pig housing systems, low protein feeding, reduced fertilizer amounts and low-emission stables for cattle. Low protein feeding and restrictive fertilizer application had the largest effect on both N inputs and N losses, resulting in N deposition reductions on Natura 2000 sites of 10% and 12%, respectively.  相似文献   
56.
We calculated farm, land, and soil N-budgets for countries in Europe and the EU27 as a whole using the agro-economic model CAPRI. For EU27, N-surplus is 55 kg N ha−1 yr−1 in a soil budget and 65 kg N2O–N ha−1 yr−1 and 67 kg N ha−1 yr−1 in land and farm budgets, respectively. NUE is 31% for the farm budget, 60% for the land budget and 63% for the soil budget. NS values are mainly related to the excretion (farm budget) and application (soil and land budget) of manure per hectare of total agricultural land. On the other hand, NUE is best explained by the specialization of the agricultural system toward animal production (farm NUE) or the share of imported feedstuff (soil NUE). Total N input, intensive farming, and the specialization to animal production are found to be the main drivers for a high NS and low NUE.  相似文献   
57.
The potential of alpine moss-sedge heath to recover from elevated nitrogen (N) deposition was assessed by transplanting Racomitrium lanuginosum shoots and vegetation turfs between 10 elevated N deposition sites (8.2-32.9 kg ha−1 yr−1) and a low N deposition site, Ben Wyvis (7.2 kg ha−1 yr−1). After two years, tissue N of Racomitrium shoots transplanted from higher N sites to Ben Wyvis only partially equilibrated to reduced N deposition whereas reciprocal transplants almost matched the tissue N of indigenous moss. Unexpectedly, moss shoot growth was stimulated at higher N deposition sites. However, moss depth and biomass increased in turfs transplanted to Ben Wyvis, apparently due to slower shoot turnover (suggested to result partly from decreased tissue C:N slowing decomposition), whilst abundance of vascular species declined. Racomitrium heath has the potential to recover from the impacts of N deposition; however, this is constrained by the persistence of enhanced moss tissue N contents.  相似文献   
58.
We modelled the combined effects of past and expected future changes in climate and nitrogen deposition on tree carbon sequestration by European forests for the period 1900-2050. Two scenarios for deposition (current legislation and maximum technically feasible reductions) and two climate scenarios (no change and SRES A1 scenario) were used. Furthermore, the possible limitation of forest growth by calcium, magnesium, potassium and phosphorus is investigated. The area and age structure of the forests was assumed to stay constant to observations during the period 1970-1990. Under these assumptions, the simulations show that the change in forest growth and carbon sequestration in the past is dominated by changes in nitrogen deposition, while climate change is the major driver for future carbon sequestration. However, its impact is reduced by nitrogen availability. Furthermore, limitations in base cations, especially magnesium, and in phosphorus may significantly affect predicted growth in the future.  相似文献   
59.
We investigated the influence of elevated CO2 and O3 on soil N cycling within the soybean growing season and across soil environments (i.e., rhizosphere and bulk soil) at the Soybean Free Air Concentration Enrichment (SoyFACE) experiment in Illinois, USA. Elevated O3 decreased soil mineral N likely through a reduction in plant material input and increased denitrification, which was evidenced by the greater abundance of the denitrifier gene nosZ. Elevated CO2 did not alter the parameters evaluated and both elevated CO2 and O3 showed no interactive effects on nitrifier and denitrifier abundance, nor on total and mineral N concentrations. These results indicate that elevated CO2 may have limited effects on N transformations in soybean agroecosystems. However, elevated O3 can lead to a decrease in soil N availability in both bulk and rhizosphere soils, and this likely also affects ecosystem productivity by reducing the mineralization rates of plant-derived residues.  相似文献   
60.
The physico-chemical absorption characteristics of ammonium-N for 10 soils from 5 profiles in York, UK, show its high potential mobility in N deposition-impacted, unfertilized, permanent grassland soils. Substantial proportions of ammonium-N inputs were retained in the solution phase, indicating that ammonium translocation plays an important role in the N cycling in, and losses from, such soils. This conclusion was further supported by measuring the ammonium-N leaching from intact plant/soil microcosms. The ammonium-N absorption characteristics apparently varied with soil pH, depth and soil texture. It was concluded for the most acid soils especially that ammonium-N leached from litter horizons could be seriously limiting the capacity of underlying soils to retain ammonium. Contrary to common opinion, more attention therefore needs to be paid to ammonium leaching and its potential role in biogeochemical N cycling in semi-natural soil systems subject to atmospheric pollution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号